Abstract:
|
[ES] El uso masivo de las telecomunicaciones exige redes de mayor capacidad. Esta capacidad puede incrementarse de las siguientes maneras: aumentando el número de antenas, el ancho de banda, la eficiencia espectral o una ...[+]
[ES] El uso masivo de las telecomunicaciones exige redes de mayor capacidad. Esta capacidad puede incrementarse de las siguientes maneras: aumentando el número de antenas, el ancho de banda, la eficiencia espectral o una combinación de ellas. En respuesta a esto, han surgido los sistemas masivos MIMO sin celdas. Estos sistemas pretenden ofrecer un servicio ubicuo y fiable, apoyándose en un número masivo de antenas y adaptando la red a las necesidades de los usuarios en cada momento. Se han estudiado sistemas MIMO masivos sin celdas tanto para frecuencias inferiores a 6 GHz como en la banda mmW, demostrando ser una buena alternativa a las celdas pequeñas. Sin embargo, hay muchas cuestiones que todavía requieren más estudio. Esta Tesis aborda las cuestiones relativas a los despliegues masivos MIMO sin celdas en términos de escalabilidad, consumo de energía, modelado realista de los escenarios de despliegue y diseño de precodificadores para dichos escenarios en la banda mmW. Los sistemas masivos sin celdas en su forma canónica consideran que todos los APs están conectados a una única CPU y que todos ellos sirven a todos los UEs al mismo tiempo. Sin embargo, en la práctica, tal sistema no es factible debido a temas de escalabilidad. Por ello, en esta Tesis se estudian y proponen diferentes soluciones de agrupación que alivian la carga tanto de cada AP individual como de la CPUs, ya que la carga total de procesamiento se divide entre ellas. Las soluciones propuestas muestran un mejor rendimiento que la solución del estado del arte estudiada para todos los tamaños de agrupación considerados e independientemente del número de UEs en el escenario. Tras las consideraciones sobre la topología lógica de la red, esta Tesis analiza el impacto en el rendimiento de la red de diferentes configuraciones de topologías físicas. En concreto, se estudia el modelado del consumo de energía considerando front-haul totalmente dedicado, híbrido y totalmente en serie. En este sentido, se sugieren algunas modificaciones al modelo tradicional de consumo de energía para obtener resultados más precisos cuando se analizan entornos en serie. A partir de los resultados obtenidos, se destaca la importancia de aplicar las modificaciones propuestas que consideran el ahorro de energía debido a las conexiones serie en un despliegue de MIMO masivo sin celdas donde cada AP transmite la misma información (excepto por los coeficientes de precodificación). Por otro lado, aunque en la banda milimétrica se dispone de mayores anchos de banda, el uso de estas frecuencias conlleva ciertos retos. Uno de estos retos es el modelado del canal radioeléctrico, ya que al trabajar con longitudes de onda del orden de decenas de milímetros cualquier objeto o rugosidad del mismo puede afectar a la propagación de la onda. En este sentido, esta Tesis, en primer lugar, propone algunas adaptaciones al modelo de bloqueo del cuerpo humano del 3GPP. Los resultados obtenidos tras las modificaciones se acercan más a los valores de las mediciones reales, lo que hace que el modelo adaptado sea más preciso para la consideración del bloqueo corporal en mmW. En segundo lugar, esta Tesis presenta una herramienta de simulación de radiocanales basada en el trazado de rayos. Se han obtenido resultados de pérdidas de trayecto para un escenario de interior que se aproximan notablemente a las medidas reales. Asimismo, los resultados obtenidos muestran que cuando no se modelan correctamente las características electromagnéticas de los materiales o no se tiene en cuenta el mobiliario en un escenario de interior, los resultados pueden diferir considerablemente de las medidas reales. Por último, esta Tesis aborda el diseño de precodificadores en sistemas MIMO masivos sin celdas en un escenario realista. Para ello, se considera un escenario industrial con requerimientos de potencia específicos. En particular, se resuelve un problema de optimización con diferentes restricciones de potencia por antena.
[-]
[CA] L'ús massiu de les telecomunicacions exigeix xarxes de major capacitat. Aquesta capacitat pot incrementar-se de les següents maneres: augmentant el nombre d'antenes, l'amplada de banda, l'eficiència espectral o una ...[+]
[CA] L'ús massiu de les telecomunicacions exigeix xarxes de major capacitat. Aquesta capacitat pot incrementar-se de les següents maneres: augmentant el nombre d'antenes, l'amplada de banda, l'eficiència espectral o una combinació d'elles. En resposta a això, han sorgit els sistemes massius MIMO sense cel·les. Aquests sistemes pretenen oferir un servei ubic i fiable, secundant-se en un nombre massiu d'antenes i adaptant la xarxa a les necessitats dels usuaris a cada moment. S'han estudiat sistemes MIMO massius sense cel·les tant per a freqüències inferiors a 6 GHz com en la banda mmW, demostrant ser una bona alternativa a les cel·les xicotetes. No obstant això, hi ha moltes qüestions que encara requereixen més estudi. Aquesta Tesi aborda les qüestions relatives als desplegaments massius MIMO sense cel·les en termes d'escalabilitat, consum d'energia, modelatge realista dels escenaris de desplegament i disseny de precodificadors per a aquests escenaris en la banda mmW. Els sistemes massius sense cel·les en la seua forma canònica consideren que tots els APs estan connectats a una única CPU i que tots ells serveixen a tots els UEs al mateix temps. No obstant això, en la pràctica, tal sistema no és factible a causa de temes d'escalabilitat. Per això, en aquesta Tesi s'estudien i proposen diferents solucions d'agrupació que alleugen la càrrega tant de cada AP individual com de la CPUs, ja que la càrrega total de processament es divideix entre elles. Les solucions proposades mostren un millor rendiment que la solució de l'estat de l'art estudiada per a totes les grandàries d'agrupació considerats i independentment del número de UEs en l'escenari. Després de les consideracions sobre la topologia lògica de la xarxa, aquesta Tesi analitza l'impacte en el rendiment de la xarxa de diferents configuracions de topologies físiques. En concret, s'estudia el modelatge del consum d'energia considerant front-haul totalment dedicat, híbrid i totalment en sèrie. En aquest sentit, se suggereixen algunes modificacions al model tradicional de consum d'energia per a obtindre resultats més precisos quan s'analitzen entorns en sèrie. A partir dels resultats obtinguts, es destaca la importància d'aplicar les modificacions proposades que consideren l'estalvi d'energia a causa de les connexions serie en un desplegament de MIMO massiva sense cel·les on cada AP transmet la mateixa informació (excepte pels coeficients de precodificació). D'altra banda, encara que en la banda mil·limètrica es disposa de majors amplades de banda, l'ús d'aquestes freqüències comporta uns certs reptes. Un d'aquests reptes és el modelatge del canal radioelèctric, ja que en treballar amb longituds d'ona de l'ordre de desenes de mil·límetres qualsevol objecte o rugositat del mateix pot afectar la propagació de l'ona. En aquest sentit, aquesta Tesi, en primer lloc, proposa algunes adaptacions al model de bloqueig del cos humà del 3GPP. Els resultats obtinguts després de les modificacions s'acosten més als valors dels mesuraments reals, la qual cosa fa que el model adaptat siga més precís per a la consideració del bloqueig corporal en mmW. En segon lloc, aquesta Tesi presenta una eina de simulació de radiocanales basada en el traçat de raigs. S'han obtingut resultats de pèrdues de trajecte per a un escenari d'interior que s'aproximen notablement a les mesures reals. Així mateix, els resultats obtinguts mostren que quan no es modelen correctament les característiques electromagnètiques dels materials o no es té en compte el mobiliari en un escenari d'interior, els resultats poden diferir considerablement de les mesures reals. Finalment, aquesta Tesi aborda el disseny de precodificadors en sistemes MIMO massius sense cel·les en un escenari realista. Per a això, es considera un escenari industrial amb requeriments de potència específics. En particular, es resol un problema d'optimització amb diferents restriccions de potència per antena.
[-]
[EN] The massive use of telecommunications demands higher capacity networks. This capacity can be increased by increasing the number of antennas, bandwidth, spectral efficiency, or a combination of these. In response to ...[+]
[EN] The massive use of telecommunications demands higher capacity networks. This capacity can be increased by increasing the number of antennas, bandwidth, spectral efficiency, or a combination of these. In response to this, cell-free massive MIMO systems have emerged. These systems aim to offer a ubiquitous and reliable service, relying on a massive number of antennas and adapting the network to users' needs. Cell-free massive MIMO systems have been studied both for frequencies below 6 GHz and in the mmW band, proving to be a good alternative to small cells. However, many issues still require further study. This Thesis addresses the issues concerning cell-free massive MIMO deployments in terms of scalability, power consumption, realistic modeling of deployment scenarios, and design of precoders for such scenarios in the mmW band.
Cell-free massive systems in their canonical form consider that all the APs are connected to a single CPU and serve all UEs simultaneously. However, in practice, such a system is not feasible, due to scalability reasons. Therefore, in this Thesis, different clustering solutions that alleviate the load of both each individual AP and the CPUs, as the total processing load is divided among them, are studied and proposed. The proposed solutions show a better performance than the state-of-the-art solution studied for all cluster sizes considered and independently of the number of UEs in the scenario.
After the logical network topology considerations, the impact on the network performance of different physical topologies configurations is analyzed. Specifically, the power consumption modeling considering fully dedicated, hybrid, and fully serial front-haul is studied. In this sense, some modifications are suggested for the traditional power consumption model in order to get more accurate results when serial environments are analyzed. The obtained results highlight the importance of applying the proposed modifications that consider the power savings due to the serial connections in a cell-free massive MIMO deployment where each AP transmits the same information (except by the precoding coefficients).
On the other hand, although wider bandwidths are available in the millimeter band, the use of these frequencies brings certain challenges. One of these challenges is modeling the radio channel since when working with wavelengths in the order of tens of millimeters, any object or roughness of the same order can affect the propagation of the wave. Another challenge is to consider the electromagnetic impact of the human body at mmW frequencies. In this sense, this Thesis, firstly, proposes some adaptations to the 3GPP body blockage model. The results obtained after the modifications are closer to real measurement values, what makes the adapted model more accurate for the consideration of body blockage at mmW. Secondly, this Thesis presents a radio channel simulation tool based on ray tracing. With this tool, path loss results have been obtained for an indoor scenario that are remarkably close to the actual measurements. Also, the results show that when the electromagnetic characteristics of the materials are not modeled correctly or the furniture is not taken into account in an indoor scenario, the adjustment of the simulation results can differ considerably from the actual measurements.
Finally, the design of precoders in cell-free massive MIMO systems in a realistic scenario is addressed. For this purpose, an industrial scenario with specific power requirements is considered. In particular, an optimization problem with different per-antenna power constraints is solved. In this case, the scenario and the radio channel are modeled using the above-mentioned tool. This fact makes it possible to find with high precision the power coefficients to be used by each transmitting antenna to transmit to each user so that the achieved data rate is maximized.
[-]
|