Mostrar el registro completo del ítem
Nieto Del-Amor, F.; Prats-Boluda, G.; Garcia-Casado, J.; Diaz-Martinez, A.; Diago-Almela, VJ.; Monfort-Ortiz, R.; Hao, D.... (2022). Combination of Feature Selection and Resampling Methods to Predict Preterm Birth Based on Electrohysterographic Signals from Imbalance Data. Sensors. 22(14):1-18. https://doi.org/10.3390/s22145098
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191405
Título: | Combination of Feature Selection and Resampling Methods to Predict Preterm Birth Based on Electrohysterographic Signals from Imbalance Data | |
Autor: | Diago-Almela, Vicente Jose Monfort-Ortiz, Rogelio Hao, Dongmei | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Due to its high sensitivity, electrohysterography (EHG) has emerged as an alternative technique for predicting preterm labor. The main obstacle in designing preterm labor prediction models is the inherent preterm/term ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3390/s22145098 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
|
|
Tipo: |
|