- -

Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension

Mostrar el registro completo del ítem

Latorre, M.; Humphrey, JD. (2018). Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomechanics and Modeling in Mechanobiology. 17(5):1497-1511. https://doi.org/10.1007/s10237-018-1041-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191435

Ficheros en el ítem

Metadatos del ítem

Título: Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension
Autor: Latorre, Marcos Humphrey, Jay D.
Fecha difusión:
Resumen:
[EN] Uncontrolled hypertension is a primary risk factor for diverse cardiovascular diseases and thus remains responsible for significant morbidity and mortality. Hypertension leads to marked changes in the composition, ...[+]
Palabras clave: Aorta , Central artery , Stiffness , Growth , Remodeling , Inflammation
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomechanics and Modeling in Mechanobiology. (issn: 1617-7959 )
DOI: 10.1007/s10237-018-1041-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10237-018-1041-8
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/
...[+]
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/
info:eu-repo/grantAgreement/MECD//CAS17%2F00068//Estancias de movilidad en el extranjero «José Castillejo» para jóvenes doctores/
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/
info:eu-repo/grantAgreement/NIH//R01 HL105297//Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension/
info:eu-repo/grantAgreement/NIH//U01 HL116323//Multiscale, Multiphysics Model of Thrombus Biomechanics in Aortic Dissection/
info:eu-repo/grantAgreement/NIH//R01 HL128602//Computational Model Driven Design of Tissue Engineered Vascular Grafts/
info:eu-repo/grantAgreement/NIH//P01 HL134605 //Endothelial Mechanotransduction in Thoracic Aneurysm Formation and Progression/
info:eu-repo/grantAgreement/NIH//R03 EB021430//Genetically-altered mechanical homeostasis in central arteries/
[-]
Agradecimientos:
This work was supported, in part, by grants from the US NIH: R01 HL105297 (to C.A. Figueroa and J.D. Humphrey), U01 HL116323 (to J.D. Humphrey and G.E. Karniadakis), R01 HL128602 (to J.D. Humphrey, C.K. Breuer, and Y. ...[+]
Tipo: Artículo

References

Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4):245–262

Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann Biomed Eng 35(9):1498

Bellini C, Ferruzzi J, Roccabianca S, Di Martino ES, Humphrey JD (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42(3):488–502 [+]
Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4):245–262

Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann Biomed Eng 35(9):1498

Bellini C, Ferruzzi J, Roccabianca S, Di Martino ES, Humphrey JD (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42(3):488–502

Bersi MR, Ferruzzi J, Eberth JF, Gleason RL, Humphrey JD (2014) Consistent biomechanical phenotyping of common carotid arteries from seven genetic, pharmacological, and surgical mouse models. Ann Biomed Eng 42(6):1207–1223

Bersi MR, Bellini C, Wu J, Montaniel KRC, Harrison DG, Humphrey JD (2016) Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67:890–896

Bersi MR, Khosravi R, Wujciak AJ, Harrison DG, Humphrey JD (2017) Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J R Soc Interface 14(136):20170,327

Chiquet M, Renedo AS, Huber F, Flück M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22(1):73–80

Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, Donato AJ, Lesniewski LA (2009) Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol 587(13):3271–3285

Eberth JF, Popovic N, Gresham VC, Wilson E, Humphrey JD (2010) Time course of carotid artery growth and remodeling in response to altered pulsatility. Am J Physiol Heart Circ Physiol 299(6):H1875–H1883

Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Comput r Methods Appl Mech Eng 198(45):3583–3602

Fridez P, Rachev A, Meister JJ, Hayashi K, Stergiopulos N (2001) Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280(6):H2752–H2760

Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4):352–363

Gleason RL, Taber LA, Humphrey JD (2004) A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries. J Biomech Eng 126(3):371–381

Haga JH, Li YSJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40(5):947–960

Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2(1):3–19

Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer, Berlin

Humphrey JD (2008a) Mechanisms of arterial remodeling in hypertension. Hypertension 52(2):195–200

Humphrey JD (2008b) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50(2):53–78

Humphrey JD, Na S (2002) Elastodynamics and arterial wall stress. Ann Biomed Eng 30(4):509–523

Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407–430

Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812

Latorre M, Humphrey JD (2018) Critical roles of time-scales in soft tissue growth and remodeling. APL Bioeng 2(2):026108

Latorre M, De Rosa E, Montáns FJ (2017) Understanding the need of the compression branch to characterize hyperelastic materials. Int J Non-linear Mech 89:14–24

Lesniewski LA, Durrant JR, Connell ML, Henson GD, Black AD, Donato AJ, Seals DR (2011) Aerobic exercise reverses arterial inflammation with aging in mice. Am J Physiol Heart Circ Physiol 301(3):H1025–H1032

Miller KS, Lee YU, Naito Y, Breuer CK, Humphrey JD (2014) Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J Biomech 47(9):2080–2087

Nissen R, Cardinale GJ, Udenfriend S (1978) Increased turnover of arterial collagen in hypertensive rats. Proc Natl Acad Sci 75(1):451–453

Rachev A, Gleason RL (2011) Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries. Biomech Model Mechanobiol 10(1):79–93

Rachev A, Stergiopulos N, Meister JJ (1996) Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J Biomech 29(5):635–642

Rachev A, Taylor WR, Vito RP (2013) Calculation of the outcomes of remodeling of arteries subjected to sustained hypertension using a 3D two-layered model. Ann Biomed Eng 41(7):1539–1553

Rezakhaniha R, Fonck E, Genoud C, Stergiopulos N (2011) Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomech Model Mechanobiol 10(4):599–611

Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4):343–357

Tellides G, Pober JS (2015) Inflammatory and immune responses in the arterial media. Circ Res 116(2):312–322

Tsamis A, Stergiopulos N, Rachev A (2009) A structure-based model of arterial remodeling in response to sustained hypertension. J Biomech Eng 131(10):101,004

Valentín A, Humphrey JD (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos Trans R Soc Lond A Math Phys Eng Sci 367(1902):3585–3606

Valentín A, Cardamone L, Baek S, Humphrey JD (2009) Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc Interface 6(32):293–306

Wilson JS, Baek S, Humphrey JD (2012) Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 9(74):2047–58

Wu J, Thabet SR, Kirabo A, Trott DW, Saleh MA, Xiao L, Madhur MS, Chen W, Harrison DG (2014) Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res 114:616–625

Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Investig 126(1):50–67

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem