- -

Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz, Miguel A. es_ES
dc.contributor.author Nguyen, K. es_ES
dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Rodríguez, Manuel es_ES
dc.contributor.author Montáns, Francisco Javier es_ES
dc.date.accessioned 2023-01-26T19:01:50Z
dc.date.available 2023-01-26T19:01:50Z
dc.date.issued 2019-10-15 es_ES
dc.identifier.issn 0168-874X es_ES
dc.identifier.uri http://hdl.handle.net/10251/191477
dc.description.abstract [EN] Sheet metal forming is a very important process in industry to create a wide variety of goods. The analysis of local ductility and residual stresses is important both to assess the viability of the manufacturing process and the reliability of the resulting elements in service. An example is crash-worthiness, where remaining ductility and residual stresses govern the safety of the overall structure during the impact. A main ingredient of finite element simulations for sheet metal forming in industry is a robust continuum-based computational algorithm for large strain elastoplasticity which includes both elastic and plastic anisotropy, as well as mixed hardening. The theory should use exactly-integrable (conservative) elastic and hardening behaviors based on physically motivated proper state variables and, if possible, result in a simple integration algorithm. In this work we implement a novel large strain formulation for anisotropic hyperelasto-plasticity in a user subroutine of the commercial program ADINA to perform sheet metal forming simulations, testing the robustness and suitability of the model for industry, as well as its accuracy. The formulation is based on a new approach to the treatment of large strain kinematics, using logarithmic elastic corrector rates instead of plastic rates. Furthermore, kinematic hardening is formulated without an explicit backstress. We compare and discuss the results with those in the literature which use alternative frameworks. es_ES
dc.description.sponsorship Partial financial support for this work has been given by grant PGC 2018-097257-B-C32 from the Direccion General de proyectos de Investigacion of the Ministerio de Economia y Competividad of Spain. The ADINA program license used in this work has been a courtesy of ADINA R&D to the UPM es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Finite Elements in Analysis and Design es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Large strains es_ES
dc.subject Anisotropic plasticity es_ES
dc.subject Sheet metal forming es_ES
dc.subject Logarithmic strains es_ES
dc.subject Multiplicative decomposition es_ES
dc.subject Hill plasticity es_ES
dc.title Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.finel.2019.06.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097257-B-C32/ES/MODELING OF THE MECHANICAL ENVIRONMENT AND CELL BEHAVIOR IN GLIOBLASTOMA GROWTH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PGC 2018-097257-B-C32//MODELING OF THE MECHANICAL ENVIRONMENT AND CELL BEHAVIOR IN GLIOBLASTOMA GROWTH/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sanz, MA.; Nguyen, K.; Latorre, M.; Rodríguez, M.; Montáns, FJ. (2019). Sheet metal forming analysis using a large strain anisotropic multiplicative plasticity formulation, based on elastic correctors, which preserves the structure of the infinitesimal theory. Finite Elements in Analysis and Design. 164:1-17. https://doi.org/10.1016/j.finel.2019.06.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.finel.2019.06.004 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 164 es_ES
dc.relation.pasarela S\472131 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem