Resumen:
|
[ES] Toneladas de aceite de oliva son producidas cada año en el área mediterránea, generando aguas residuales con elevada carga orgánica (COD) y polifenoles (TPhs). Los TPhs son compuestos fitotóxicos, sin embargo, poseen ...[+]
[ES] Toneladas de aceite de oliva son producidas cada año en el área mediterránea, generando aguas residuales con elevada carga orgánica (COD) y polifenoles (TPhs). Los TPhs son compuestos fitotóxicos, sin embargo, poseen una alta actividad antioxidante, siendo valiosos para su comercialización. La Tesis Doctoral pretende implementar la economía circular para el tratamiento de estas aguas residuales. Para ello, varias combinaciones de procesos fueron estudiados, para recuperar TPhs y reincorporar estas aguas en el proceso productivo. El agua estudiada corresponde a agua de lavado de aceite de oliva (OOWW, "olive oil washing wastewater"), obtenida a la salida de la centrifugación vertical (lavado del aceite), generada en la elaboración de aceite de oliva mediante centrifugación de dos fases. El estudio contempla la utilización de procesos de membrana, resinas de adsorción y tratamiento biológico.
Primero se realizó un pretratamiento (flotación, sedimentación y filtración con cartucho) eliminando 89% de grasas y aceites y 40% de color, turbidez y sólidos en suspensión. Luego fue alimentada al proceso de Ultrafiltración (UF) para obtener un permeado rico en TPhs con baja COD. Diferentes membranas, condiciones operacionales (presión transmembranal (TMP) y velocidad tangencial (CFV)) y protocolos de limpieza fueron estudiados. Modelos matemáticos semi-empíricos, método de superficies de respuesta (RSM) y redes neuronales artificiales (ANN) fueron utilizados para predecir el comportamiento de la densidad de flujo de permeado y analizar el tipo de ensuciamiento predominante. La membrana UP005 a TMP de 2 bar y CFV de 2.5m/s fue seleccionada, con una densidad de flujo de permeado estable de 40L/h·m2, bajo rechazo de TPhs (8%) y alto rechazo de COD (61%). Los modelos matemáticos indicaron que más de un proceso de ensuciamiento contribuyeron al ensuciamiento de las membranas. El análisis estadístico ANOVA de RSM mostró que la CFV como la TMP afectan a la densidad de flujo de permeado. Mediante ANN fue posible predecir los datos experimentales de variación de densidad de flujo de permeado con el tiempo. La nanofiltración (NF) y la ósmosis directa (FO) se estudiaron para concentrar los TPhs presentes en el permeado de UF. En la NF se analizaron varias membranas bajo diferentes condiciones operacionales para obtener el mayor rechazo de TPhs. La membrana NF270 a CFV de 1m/s y TMP de 10 bar, logró una densidad de flujo de permeado estable de 74L/h·m2, rechazo de TPhs del 94% y rechazo de COD del 83%. Para el estudio del ensuciamiento de las membranas se utilizaron dos técnicas espectroscópicas, fluorescencia 2D y FTIR, obteniendo información sobre la adsorción de algunos compuestos sobre la superficie de las membranas, y evaluar la eficiencia del protocolo de limpieza. En la FO dos membranas fueron analizadas para la concentración de TPhs. También se estudió el uso de aguas residuales procedentes de la etapa de fermentación en la elaboración de aceitunas de mesa (FTOP) como disolución de arrastre debido a su alta salinidad. Con la membrana HFFO6 (caudal de 30 L/h) se logró la concentración de TPhs en un 79% y la dilución de la FTOP. Cuatro resinas de adsorción fueron estudiadas para recuperar los TPhs presentes en los concentrados de la FO y de la NF. Se estudiaron diferentes concentraciones de resina, tiempos de contacto y disolventes de desorción para la obtención de un concentrado puro, rico en TPhs. Los mejores resultados se obtuvieron con 40 g/L de resina MN200 y una disolución 50% etanol/agua como disolvente. Finalmente, las aguas resultantes (concentrado de FO y rechazos de NF y UF) fueron sometidas a tratamientos biológicos. Primero se realizaron estudios para evaluar la concentración inicial de los reactores biológicos. Mediante tratamiento biológico SBR se logró eliminar en gran medida la COD y los TPhs (rechazo de UF) presentes, logrando obtener efluentes con características aptas para ser utilizadas como agua de limpieza de maquinaria.
[-]
[CA] Tones d'oli d'oliva són produïdes cada any a l'àrea mediterrània, generant aigües residuals amb càrrega orgànica elevada (COD) i polifenols (TPhs). Els TPhs són compostos fitotòxics, no obstant això, tenen una alta ...[+]
[CA] Tones d'oli d'oliva són produïdes cada any a l'àrea mediterrània, generant aigües residuals amb càrrega orgànica elevada (COD) i polifenols (TPhs). Els TPhs són compostos fitotòxics, no obstant això, tenen una alta activitat antioxidant, sent valuosos per a la seva comercialització. La Tesi Doctoral pretén implementar l¿economia circular per al tractament d¿aquestes aigües residuals. Per això, diverses combinacions de processos van ser estudiats, per recuperar TPhs i reincorporar aquestes aigües al procés productiu. L'aigua estudiada correspon a aigua de rentat d'oli d'oliva (OOWW, olive oil washing wastewater), obtinguda a la sortida de la centrifugació vertical (rentat de l'oli), generada en l'elaboració d'oli d'oliva mitjançant centrifugació de dues fases. L'estudi contempla la utilització de processos de membrana, resines d'adsorció i tractament biològic.
Primer es va realitzar un pretractament (flotació, sedimentació i filtració amb cartutx) eliminant 89% de greixos i olis i 40% de color, terbolesa i sòlids en suspensió. Després va ser alimentada al procés d'Ultrafiltració (UF) per obtenir un permeat ric en TPhs amb baixa COD. Diferents membranes, condicions operacionals (pressió transmembranal (TMP) i velocitat tangencial (CFV)) i protocols de neteja van ser estudiats. Models matemàtics semi-empírics, mètode de superfícies de resposta (RSM) i xarxes neuronals artificials (ANN) van ser utilitzats per predir el comportament de la densitat de flux de permeat i analitzar el tipus d'embrutament predominant. La membrana UP005 a TMP de 2 bar i CFV de 2.5m/s va ser seleccionada, amb una densitat de flux de permeat estable de 40L/h·m2, baix rebuig de TPhs (8%) i alt rebuig de COD (61%) . Els models matemàtics van indicar que més d'un procés d'embrutament van contribuir a embrutar les membranes. L'anàlisi estadística ANOVA de RSM va mostrar que la CFV com la TMP afecten la densitat de flux de permeat. Mitjançant ANN va ser possible predir les dades experimentals de variació de densitat de flux de permeat amb el temps. La nanofiltració (NF) i l'osmosi directa (FO) es van estudiar per concentrar els TPhs presents al permeat d'UF. A la NF es van analitzar diverses membranes sota diferents condicions operacionals per obtenir el major rebuig de TPhs. La membrana NF270 a CFV de 1m/s i TMP de 10 bar, va aconseguir una densitat de flux de permeat estable de 74L/h·m2, rebuig de TPhs del 94% i rebuig de COD del 83%. Per estudiar l'embrutament de les membranes es van utilitzar dues tècniques espectroscòpiques, fluorescència 2D i FTIR, obtenint informació sobre l'adsorció d'alguns compostos sobre la superfície de les membranes, i avaluar l'eficiència del protocol de neteja. A la FO dues membranes van ser analitzades per a la concentració de TPhs. També es va estudiar l'ús d'aigües residuals procedents de l'etapa de fermentació en l'elaboració d'olives de taula (FTOP) com a dissolució d'arrossegament per la seva alta salinitat. Amb la membrana HFFO6 (cabal de 30 L/h) es va aconseguir la concentració de TPhs en un 79% i la dilució de la FTOP. Quatre resines d'adsorció van ser estudiades per recuperar els TPhs presents als concentrats de la FO i de la NF. Es van estudiar diferents concentracions de resina, temps de contacte i dissolvents de desorció per obtenir un concentrat pur, ric en TPhs. Els millors resultats es van obtenir amb 40 g/L de resina MN200 i una dissolució 50% etanol/aigua com a dissolvent. Finalment, les aigües resultants (concentrat de FO i rebutjos de NF i UF) van ser sotmeses a tractaments biològics. Primer es van fer estudis per avaluar la concentració inicial dels reactors biològics. Mitjançant tractament biològic SBR es va aconseguir eliminar en gran mesura la COD i els TPhs (rebuig d'UF) presents, aconseguint obtenir efluents amb característiques aptes per ser utilitzades com a aigua de neteja de maquinària.
[-]
[EN] Tons of olive oil are produced each year in the Mediterranean area, generating wastewater with a high organic load (COD) and polyphenols (TPhs). TPhs are phytotoxic compounds, however, they have a high antioxidant ...[+]
[EN] Tons of olive oil are produced each year in the Mediterranean area, generating wastewater with a high organic load (COD) and polyphenols (TPhs). TPhs are phytotoxic compounds, however, they have a high antioxidant activity, being valuable for their commercialization. The Doctoral Thesis aims to implement the circular economy for the treatment of these wastewaters. For this, various combinations of processes were studied to recover TPhs and reincorporate these waters into the production process. The water studied corresponds to olive oil washing water (OOWW), obtained at the outlet of the vertical centrifugation (oil washing), generated in the production of olive oil by means of two-phase centrifugation. The study contemplates the use of membrane processes, adsorption resins and biological treatment.
First, a pretreatment (flotation, sedimentation and cartridge filtration) was carried out, eliminating 89% of fats and oils and 40% of colour, turbidity and suspended solids. Then it was fed to the Ultrafiltration (UF) process to obtain a permeate rich in TPhs with low COD. Different membranes, operational conditions (transmembrane pressure (TMP) and cross low velocity (CFV)) and cleaning protocols were studied. Semi-empirical mathematical models, the response surface method (RSM) and artificial neural networks (ANN) were used to predict the behavior of the permeate flux density and to analyze the predominant type of fouling. The UP005 membrane at 2 bar TMP and 2.5m/s CFV was selected, with a stable permeate flux density of 40L/h·m2, low TPhs rejection (8%) and high COD rejection (61%). Mathematical models indicated that more than one fouling process contributed to the fouling of the membranes. Statistical analysis ANOVA of RSM showed that both CFV and TMP affect permeate flux density. Through ANN it was possible to predict the experimental data of permeate flux density variation over time. Nanofiltration (NF) and forward osmosis (FO) were studied to concentrate the TPhs present in the UF permeate. In the NF several membranes were analyzed under different operational conditions to obtain the highest rejection of TPhs. The NF270 membrane at CFV of 1m/s and TMP of 10 bar, achieved a stable permeate flux density of 74L/h·m2, TPhs rejection of 94% and COD rejection of 83%. To study the fouling of the membranes, two spectroscopic techniques were used, 2D fluorescence and FTIR, obtaining information on the adsorption of some compounds on the surface of the membranes, and evaluating the efficiency of the cleaning protocol. In the FO two membranes were analyzed for the concentration of TPhs. The use of wastewater from the fermentation stage in the production of table olives (FTOP) as a stripping solution due to its high salinity was also studied. With the HFFO6 membrane (flow rate of 30 L/h) the concentration of TPhs was achieved by 79% and the dilution of the FTOP. Four adsorption resins were studied to recover the TPhs present in the FO and NF concentrates. Different resin concentrations, contact times and desorption solvents were studied to obtain a pure concentrate, rich in TPhs. The best results were obtained with 40 g/L of MN200 resin and a 50% ethanol/water solution as solvent. Finally, the resulting waters (FO concentrate and NF and UF rejections) were subjected to biological treatments. First, studies were carried out to evaluate the initial concentration of the biological reactors. Using SBR biological treatment, it was possible to largely eliminate the COD and the TPhs (rejection of UF) present, managing to obtain effluents with suitable characteristics to be used as machinery cleaning water.
[-]
|