- -

A federated cloud architecture for processing of cancer images on a distributed storage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A federated cloud architecture for processing of cancer images on a distributed storage

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Segrelles Quilis, José Damián es_ES
dc.contributor.author López-Huguet, Sergio es_ES
dc.contributor.author Lozano Lloret, Pau es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.date.accessioned 2023-02-03T19:01:06Z
dc.date.available 2023-02-03T19:01:06Z
dc.date.issued 2023-02 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/191618
dc.description.abstract [EN] The increased accuracy and exhaustivity of modern Artificial Intelligence techniques in supporting the analysis of complex data, such as medical images, have exponentially increased real-world data collection for research purposes. This fact has led to the development of international repositories and high-performance computing solutions to deal with the computational demand for training models. However, other stages in the development of medical imaging biomarkers do not require such intensive computing resources, which has led to the convenience of integrating different computing backends tailored for the processing demands of the various stages of processing workflows. We present in this article a distributed and federated repository architecture for the development and application of medical image biomarkers that combines multiple cloud storages with cloud and HPC processing backends. The architecture has been deployed to serve the PRIMAGE (H2020 826494) project, aiming to collect and manage data from paediatric cancer. The repository seamlessly integrates distributed storage backends, an elastic Kubernetes cluster on a cloud on-premises and a supercomputer. Processing jobs are handled through a single control platform, synchronising data on demand. The article shows the specification of the different types of applications and a validation through a use case that make use of most of the features of the platform. es_ES
dc.description.sponsorship The work presented in this paper has been partially funded by the project PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer persona-lised diaGnosis and prognosis, empowered by imaging biomarkers) Business Place is a Horizon 2020, Research and Innovation Actions (RIA) (Topic SC1-DTH-07-2018) with grant agreement no: 826494. This research was supported in part by PLGrid Infrastructure. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Medical imaging es_ES
dc.subject Biomarkers es_ES
dc.subject Storage and computing backends es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A federated cloud architecture for processing of cancer images on a distributed storage es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2022.09.019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826494/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Segrelles Quilis, JD.; López-Huguet, S.; Lozano Lloret, P.; Blanquer Espert, I. (2023). A federated cloud architecture for processing of cancer images on a distributed storage. Future Generation Computer Systems. 139:38-52. https://doi.org/10.1016/j.future.2022.09.019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.future.2022.09.019 es_ES
dc.description.upvformatpinicio 38 es_ES
dc.description.upvformatpfin 52 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.relation.pasarela S\475725 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem