- -

What-You-Prescribe-is-What-You-Get orthotropic hyperelasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

What-You-Prescribe-is-What-You-Get orthotropic hyperelasticity

Mostrar el registro completo del ítem

Latorre, M.; Montáns, FJ. (2014). What-You-Prescribe-is-What-You-Get orthotropic hyperelasticity. Computational Mechanics. 53(6):1279-1298. https://doi.org/10.1007/s00466-013-0971-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191671

Ficheros en el ítem

Metadatos del ítem

Título: What-You-Prescribe-is-What-You-Get orthotropic hyperelasticity
Autor: Latorre, Marcos Montáns, Francisco Javier
Fecha difusión:
Resumen:
[EN] We present a model for incompressible finite strain orthotropic hyperelasticity using logarithmic strains. The model does not have a prescribed shape. Instead, the energy function shape and the material data of the ...[+]
Palabras clave: Hyperelasticity , Incompressible orthotropic materials , Finite elements , Living tissues , Rubber-like materials
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-013-0971-3
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00466-013-0971-3
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2011-26635//Modelado computacional de la termo-elasto-viscoplasticidad en grandes deformaciones/
Agradecimientos:
Partial financial support for this research is given by the Dirección General de Investigación of the Ministerio de Economía y Competitividad of Spain under grant DPI2011-26635 of the Plan Nacional de Investigación.
Tipo: Artículo

References

Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

Kojic M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, New York

Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola [+]
Bathe KJ (1996) Finite element procedures. Prentice-Hall, New Jersey

Kojic M, Bathe KJ (2005) Inelastic analysis of solids and structures. Springer, New York

Ogden RW (1997) Non-linear elastic deformations. Dover, Mineola

Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. In: Onate E, Owen R (eds) Computational plasticity. Springer, Netherlands, pp 13–36

Caminero MÁ, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comp Struct 89:826–843

Kojic M, Bathe KJ (1987) Studies of finite element procedures stress solution of a closed elastic strain path with stretching and shearing using the updated lagrangian Jaumann formulation. Comp Struct 26(1/2):175–179

Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A 326:565–584

Mooney M (1940) A theory of large elastic deformation. J App Phys 11:582–592

Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil Trans R Soc Lond A 241(835):379–397

Blatz PJ, Ko WL (1962) Application of finite elasticity theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251

Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805

Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. J Aust Math Soc B 24:424–434

Itskov M (2001) A generalized orthotropic hyperelastic material model with application to incompressible shells. Int J Number Method Eng 50:1777–1799

Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solid Struct 41:3833–3848

Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a characterization structurally based framework for material characterization. Phil Trans R Soc A 367:3445–3475

Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension–compression test data. Commun Number Method Eng 25:53–63

Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain–energy function of the Valanis–Landel type. J Rheol 24:483–501

Latorre M, Montáns FJ (2013) Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comp Struct 122:13–26

Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solids Struct (in press)

Valanis KC, Landel RF (1967) The strain–energy function of a hyperelastic material in terms of the extension ratios. J App Phys 38:2997–3002

Montáns FJ, Benítez JM, Caminero MÁ (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43: 50–56

Miehe C, Lambrecht M (2001) Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun Numer Methods Eng 17:337–353

Anand L (1979) On H. Hencky’s approximate strain–energy function for moderate deformations. J App Mech 46:78–82

Anand L (1986) Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J Mech Phys Solid 34:293–304

Morrow DA, Donahue TLH, Odegard GM, Kaufman KR (2010) Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater 3:124–129

Holzapfel GA, Sommer G, Gasser TC, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:2048–2058

Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555

Dokos S, Smaill BH, Young AA, LeGrice IL (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:2650–2659

Diani J, Brieu M, Vacherand JM, Rezgui A (2004) Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mech Mater 36:313–321

Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comp Struct 26:357–409

Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767–2791

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem