Abdel-Rahman, E.M., Ahmed, F.B. 2008. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. International Journal of Remote Sensing, 29(13), 3753-3767. https://doi.org/10.1080/01431160701874603
Abebe, G., Tadesse, T., Gessesse, B. 2022. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. Journal of the Indian Society of Remote Sensing, 50, 143-157. https://doi.org/10.1007/s12524-021-01466-8
Alemán-Montes, B., Henríquez-Henríquez, C., Ramírez-Rodríguez, T., Largaespada-Zelaya, K. 2021. Estimación de rendimiento en el cultivo de caña de azúcar (Saccharum officinarum) a partir de fotogrametría con vehículos aéreos no tripulados (VANT). Agronomía Costarricense, 45(1), 67-80. https://doi.org/10.15517/rac.v45i1.45695
[+]
Abdel-Rahman, E.M., Ahmed, F.B. 2008. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. International Journal of Remote Sensing, 29(13), 3753-3767. https://doi.org/10.1080/01431160701874603
Abebe, G., Tadesse, T., Gessesse, B. 2022. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. Journal of the Indian Society of Remote Sensing, 50, 143-157. https://doi.org/10.1007/s12524-021-01466-8
Alemán-Montes, B., Henríquez-Henríquez, C., Ramírez-Rodríguez, T., Largaespada-Zelaya, K. 2021. Estimación de rendimiento en el cultivo de caña de azúcar (Saccharum officinarum) a partir de fotogrametría con vehículos aéreos no tripulados (VANT). Agronomía Costarricense, 45(1), 67-80. https://doi.org/10.15517/rac.v45i1.45695
Alemán, B., Serra, P., Zabala, A. 2022. Estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación. En L.Á. Ruiz Fernández, J. Estornell Cremades, M. González de Audícana Amenábar, J. Álvarez Mozos (Ed.), XIX Congreso de la Asociación Española de Teledetección, 27-30.
Allison, J.C.S., Pammenter, N.W., Haslam, R.J. 2007. Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African Journal of Botany, 73(4), 546-551. https://doi.org/10.1016/j.sajb.2007.04.065
Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F., Siegmund, B. 2010. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, 31(20), 5391-5407. https://doi.org/10.1080/01431160903349057
Canata, T.F., Wei, M.C.F., Maldaner, L.F., Molin, J.P. 2021. Sugarcane yield mapping using highresolution imagery data and machine learning technique. Remote Sensing, 13(2), 1-14. https://doi.org/10.3390/rs13020232
Chaves, M., Bermúdez, L. 2015. Agroindustria azucarera costarricense: un modelo organizacional y productivo efectivo con 75 años de vigencia Introducción. En Departamento de investigación y extensión de la caña de azúcar (DIECA).
Chaves, M., Picoli, M., Sanches, I. 2020. Recent applications of Landsat 8/OLI and Sentinel-2/ MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062
Cock, J.H. 2003. Sugarcane growth and development. International Sugar Journal, 105(1259), 540-552.
Dubey, S.K., Gavli, A.S., Yadav, S.K., Sehgal, S., Ray, S.S. 2018. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India. Journal of the Indian Society of Remote Sensing, 46(11), 1823-1833. https://doi.org/10.1007/s12524-018-0839-2
ESA, (European Space Agency). 2021. S2 MPC Sen2Cor Software.
Escadafal, R., Huete, A. 1991. Étude Des Propriétés Spectrales Des Sols Arides Appliquée à Lamélioration Des Indices de Vegetation Obtenus Par Télédection. CR Académie des Sciences de Paris, 312(2), 1385-1391. http://www.scopus.com/inward/record.url?eid=2-s2.0-0026305591&partnerID=40&md5=1a9a77276f4613b8eec010a111f41ff0
Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N. 1996. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3), 416-426. https://doi.org/10.1016/S0034-4257(02)00018-4
Huete, A. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(1), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(12), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
IMN, (Instituto meteorológico Nacional de Costa Rica). 2008. Atlas climático de Costa Rica. https://www.imn.ac.cr/atlas-climatologico
INEC (Instituto Nacional de Estadística y Censos). 2020. Encuesta Nacional Agropecuaria 2019: Resultados Generales de la Actividad Agrícola y Forestal. https://inec.cr/estadisticas-fuentes/encuestas/encuesta-nacional-agropecuaria?page=7
Inman-Bamber, N.G. 1994. Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 36(1), 41-51. https://doi.org/10.1016/0378-4290(94)90051-5
James, G., Witten, D., Trevor, H., Tibshirani, R. 2013. An Introduction to Statistical Learning - with Applications in R, Gareth James, Springer. https://doi.org/10.1007/978-1-4614-7138-7
Jiménez-Jiménez, S.I., Marcial-Pablo, M. de J., Ojeda-Bustamante, W., Sifuentes-Ibarra, E., Inzunza-Ibarra, M.A., Sánchez-Cohen, I. 2022. VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data. Agronomy, 12(7). https://doi.org/10.3390/agronomy12071518
Jordan, C.F. 1969. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663-666. https://doi.org/10.2307/1936256
Krupavathi, K., Raghubabu, M., Mani, A., Parasad, P.R.K., Edukondalu, L. 2022. Field-Scale Estimation and Comparison of the Sugarcane Yield from Remote Sensing Data: A Machine Learning Approach. Journal of the Indian Society of Remote Sensing, 50(2), 299-312. https://doi.org/10.1007/s12524-021-01448-w
Li, J., Lu, X., Cheng, K., Liu, W. 2020. Regression and Time Series Model Selection. Regression and Time Series Model Selection, 1968. https://doi.org/10.1142/3573
dos Santos Luciano, A.C., Picoli, M.C.A., Duft, D.G., Rocha, J.V., Leal, M.R.L.V., le Maire, G. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture, 184, 106063. https://doi.org/10.1016/j.compag.2021.106063
Mata, R., Rosales, A., Sandoval, Da., Vindas, E., Alemán, B. 2020. Subórdenes de suelos de Costa Rica [mapa digital]. Escala 1:200000. http://www.cia.ucr.ac.cr/es/mapa-de-suelos-de-costa-rica
Max, A., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Ziem, A., Scrucca, L., Hunt, T., Kuhn, M.M. 2020. Package 'caret ' R.
Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J.F., Petit, M. 2014. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on reunion island. Remote Sensing, 6(7), 6620-6635. https://doi.org/10.3390/rs6076620
Narmilan, A., Gonzalez, F., Salgadoe, A.S.A., Kumarasiri, U.W.L.M., Weerasinghe, H.A.S., Kulasekara, B.R. 2022. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5), 1140. https://doi.org/10.3390/rs14051140
Panigrahy, S., Sharma, S.A. 1997. Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91. https://doi.org/10.1016/S0924-2716(97)83003-1
Pearson, R.L., Miller, L.D. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of Shortgrass Prairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of the Environment.
Piekutowska, M., Niedbała, G., Piskier, T., Lenartowicz, T., Pilarski, K., Wojciechowski, T., Pilarska, A.A., Czechowska-Kosacka, A. 2021. The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy, 11(5), 885. https://doi.org/10.3390/agronomy11050885
Rahman, M.M., Robson, A. 2020. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level. Remote Sensing, 12(8), 1313. https://doi.org/10.3390/rs12081313
Rahman, M.M., Robson, A.J. 2016. A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region. Advances in Remote Sensing, 5, 93-102. https://doi.org/10.4236/ars.2016.52008
Rao, P.V.K., Rao, V.V., Venkataratnam, L. 2002. Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech, 4(3-4), 97-101. https://doi.org/10.1007/BF02942689
Richardson, A.J., Wiegand, C.L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552.
Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) symposium, 351, 309-317. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf
Rudorff, B.F.T., Batista, G.T. 1990. Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sensing of Environment, 33(3), 183-192. https://doi.org/10.1016/0034-4257(90)90029-L
Saez, J.V. 2017. Dinámica de acumulación de sacarosa en tallos de caña de azúcar (Saccharum spp.) modulada por cambios en la relación fuente-destino. Universidad Nacional de Cordoba.
Shendryk, Y., Davy, R., Thorburn, P. 2021. Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning. Field Crops Research, 260(October 2020), 107984. https://doi.org/10.1016/j.fcr.2020.107984
Simões, M. dos S., Rocha, J.V., Lamparelli, R.A.C. 2005. Variáveis espectrais e indicadores de desenvolvimento e produtividade da canadeaçúcar. Scientia Agricola, 62(3), 199–207. https://doi.org/10.1590/S0103-90162005000300001
Sishodia, R.P., Ray, R.L., Singh, S.K. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 1–31. https://doi.org/10.3390/rs12193136
Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., Immitzer, M. 2021. Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 1-46. https://doi.org/10.3390/rs13204040
USGS, (United States Geological Survey). 2022. Landsat 8-9 Collection 2 (C2) Level 2 Science Product ( L2SP ) Guide. En USGS (Vol. 2, Número March).
Zhao, Y., Justina, D. Della, Kazama, Y., Rocha, J.V., Graziano, P.S., Lamparelli, R.A.C. 2016. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery. En C.M.U. Neale y A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII (Vol. 9998, p. 99980J). https://doi.org/10.1117/12.2242490
Zumo, I.M., Hashim, M. 2020. Mapping Seasonal Variations of Grazing Land Above-ground Biomass with Sentinel 2A Satellite Data. IOP Conference Series: Earth and Environmental Science, 540(1). https://doi.org/10.1088/1755-1315/540/1/012061
[-]