- -

Clasificación de cobertura vegetal con resolución espacial de 10 metros en bosques del Caribe colombiano basado en misiones Sentinel 1 y 2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Clasificación de cobertura vegetal con resolución espacial de 10 metros en bosques del Caribe colombiano basado en misiones Sentinel 1 y 2

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Anaya, Jesús A. es_ES
dc.contributor.author Rodríguez-Buriticá, Susana es_ES
dc.contributor.author Londoño, María C. es_ES
dc.coverage.spatial east=-74.70653824934462; north=10.499076469192469; name=Caribe colombiano, Colòmbia es_ES
dc.date.accessioned 2023-02-07T08:42:15Z
dc.date.available 2023-02-07T08:42:15Z
dc.date.issued 2023-01-30
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/191685
dc.description.abstract [EN] A Land cover map of the Colombian Caribbean were generated with data from the Sentinel-1 and Sentinel-2 missions for the year 2020. The main objective was to evaluate Sentinel 1 and 2 images to generate a classification for Caribbean forests. The images were processed using Google Earth Engine (GEE) and then classified using Random Forest. The Overall Accuracy, the Mean Decrease Accuracy and the Mean Decrease in Gini were calculated for the optical and radar bands, this allowed evaluating the importance of different regions of the electromagnetic spectrum in the classification of vegetation cover and the relative importance of the spectral bands. The accuracy of the land cover map was 76% using exclusively Sentinel-2 bands, with a slight increase when Sentinel-1 data was incorporated. The SWIR region was the most important of both Sentinel programs for increasing accuracy. We highlight the importance of coastal aerosol band 1 (442.7 nm) in the classification despite its low spatial resolution. The overall accuracy reached 83% when adding the Elevation data from the Shuttle Radar Topography Mission (SRTM) as auxiliary variable. These results indicate great potential for the generation of vegetation cover maps at the regional level while maintaining a pixel size of 10 m. This article highlights the relative importance of the different bands and its contribution to improve accuracy. es_ES
dc.description.abstract [ES] Se generó un mapa de cobertura terrestre del Caribe colombiano con datos de las misiones Sentinel-1 y Sentinel-2 para el año 2020. El objetivo principal fue evaluar el uso de imágenes Sentinel 1 y 2 para la generación de una clasificación de bosques del Caribe. Las imágenes fueron procesadas con Google Earth Engine (GEE) y luego clasificadas con Random Forest. Se calculó la exactitud global, la disminución media en exactitud y la disminución media en Gini para las bandas ópticas y radar. Esto permitió evaluar la importancia de las diferentes regiones del espectro electromagnético en la clasificación de la cobertura vegetal y la importancia relativa de cada banda. La exactitud del mapa de cobertura terrestre fue del 76% utilizando exclusivamente las bandas de Sentinel-2, con un ligero aumento cuando se incorporaron los datos de Sentinel-1. La región SWIR fue la más importante de ambos programas Sentinel para aumentar la exactitud. Destacamos la importancia de la banda 1 de aerosoles costeros (442,7 nm) en la clasificación a pesar de su baja resolución espacial. La exactitud global alcanzó el 83% al agregar los datos de elevación de la misión de topografía de radar del transbordador (SRTM) como variable auxiliar. Estos resultados indican un gran potencial para la generación de mapas de cobertura vegetal a nivel regional manteniendo un tamaño de píxel de 10 m. Este artículo destaca la importancia relativa de las diferentes bandas y su aporte a la clasificación en términos de exactitud. es_ES
dc.description.sponsorship Esta publicación ha sido producida con el apoyo total o parcial de NAS y del pueblo de los Estados Unidos de América a través de la Agencia de Estados Unidos para el Desarrollo Internacional (USAID), número de subvención USAID AID-OAA-A-11-00012. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Sentinel es_ES
dc.subject Bands selection es_ES
dc.subject Google Earth Engine es_ES
dc.subject Classification accuracy es_ES
dc.subject Dry forest es_ES
dc.subject Colombia es_ES
dc.subject Selección de bandas es_ES
dc.subject Exactitud de la clasificación es_ES
dc.subject Bosque seco es_ES
dc.title Clasificación de cobertura vegetal con resolución espacial de 10 metros en bosques del Caribe colombiano basado en misiones Sentinel 1 y 2 es_ES
dc.title.alternative Land cover classification with spatial resolution of 10 meters in forests of the Colombian Caribbean based on Sentinel 1 and 2 missions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2023.17655
dc.relation.projectID info:eu-repo/grantAgreement/USAID//AID-OAA-A-11-00012 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Anaya, JA.; Rodríguez-Buriticá, S.; Londoño, MC. (2023). Clasificación de cobertura vegetal con resolución espacial de 10 metros en bosques del Caribe colombiano basado en misiones Sentinel 1 y 2. Revista de Teledetección. (61):29-41. https://doi.org/10.4995/raet.2023.17655 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2023.17655 es_ES
dc.description.upvformatpinicio 29 es_ES
dc.description.upvformatpfin 41 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 61 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\17655 es_ES
dc.contributor.funder United States Agency for International Development es_ES
dc.description.references Achard, F., y Hansen, M.C. 2013. Global forest monitoring from earth observation (E. Chuvieco, Ed.; p. 316). CRC Press, Taylor y Francis Group. es_ES
dc.description.references Anaya, J.A., Colditz, R.R., y Valencia, G.M. 2015. Land cover mapping of a tropical region by integrating multi-year data into an annual time series. Remote Sensing, 7(12). https://doi.org/10.3390/rs71215833 es_ES
dc.description.references Anaya, J.A., Gutiérrez-Vélez, V.H., Pacheco-Pascagaza, A.M., Palomino-Ángel, S., Han, N., y Balzter, H. 2020. Drivers of Forest Loss in a Megadiverse Hotspot on the Pacific Coast of Colombia. Remote Sensing, 12(8), 1235. https://doi.org/10.3390/rs12081235 es_ES
dc.description.references Andrade, J., Cunha, J., Silva, J., Rufino, I., y Galvão, C. 2021. Evaluating single and multidate Landsat classifications of land-cover in a seasonally dry tropical forest. Remote Sensing Applications: Society and Environment, 22, 100515. https://doi.org/10.1016/j.rsase.2021.100515 es_ES
dc.description.references Arias, M., Campo-Bescós, M.Á., y Álvarez-Mozos, J. 2020. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. In Remote Sensing, 12(2), 278. https://doi.org/10.3390/rs12020278 es_ES
dc.description.references Barlow, J., Lennox, G.D., Ferreira, J., Berenguer, E., Lees, A.C., Nally, R. mac, Thomson, J.R., Ferraz, S.F. de B., Louzada, J., Oliveira, V.H.F., Parry, L., Ribeiro de Castro Solar, R., Vieira, I.C.G., Aragão, L.E.O.C., Begotti, R.A., Braga, R.F., Cardoso, T.M., Jr, R.C. de O., Souza Jr, C.M., … Gardner, T.A. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144-147. https://doi.org/10.1038/nature18326 es_ES
dc.description.references Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A., Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., García-Montero, L.G., Groot, N., Guerin, G., … Castro, R. 2017. The extent of forest in dryland biomes. Science, 356(6338), 635 LP - 638. https://doi.org/10.1126/science.aam6527 es_ES
dc.description.references Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Campos-Taberner, M., García-Haro, F.J., Martínez, B., y Gilabert, M.A. 2020. Deep learning for agricultural land use classification from sentinel-2. Revista de Teledeteccion, 2020(56 Special issue), 35-48. https://doi.org/10.4995/raet.2020.13337 es_ES
dc.description.references Cartus, O., Kellndorfer, J., Walker, W., Franco, C., Bishop, J., Santos, L., y Fuentes, J.M.M. 2014. A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sensing, 6, 5559-5588. https://doi.org/10.3390/rs6065559 es_ES
dc.description.references Cavalcante, R.B.L., Ferreira, D.B. da S., Pontes, P.R.M., Tedeschi, R.G., da Costa, C.P.W., y de Souza, E.B. 2020. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research, 238, 104879. https://doi.org/10.1016/j.atmosres.2020.104879 es_ES
dc.description.references Chastain, R., Housman, I., Goldstein, J., Finco, M., y Tenneson, K. 2019. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sensing of Environment, 221, 274-285. https://doi.org/10.1016/j.rse.2018.11.012 es_ES
dc.description.references Chazdon, R.L., Brancalion, P.H.S., Laestadius, L., Bennett-Curry, A., Buckingham, K., Kumar, C., Moll-Rocek, J., Vieira, I.C.G., y Wilson, S.J. 2016. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 45(5), 538-550. https://doi.org/10.1007/s13280-016-0772-y es_ES
dc.description.references Chen, B., Li, X., Xiao, X., Zhao, B., Dong, J., Kou, W., Qin, Y., Yang, C., Wu, Z., Sun, R., Lan, G., y Xie, G. 2016. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. International Journal of Applied Earth Observation and Geoinformation, 50, 117-130. https://doi.org/10.1016/j.jag.2016.03.011 es_ES
dc.description.references Congalton, R.G., y Green, Kass. 2009. Assessing the accuracy of remotely sensed data (2nd ed.). CRC Press. es_ES
dc.description.references Correa-Ayram, C.A., Etter, A., Díaz-Timoté, J., Rodríguez-Buriticá, S., Ramírez, W., y Corzo, G. 2020. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117, 106630. https://doi.org/10.1016/j.ecolind.2020.106630 es_ES
dc.description.references Descals, A., Wich, S., Meijaard, E., Gaveau, D.L.A., Peedell, S., y Szantoi, Z. 2021. High-resolution global map of smallholder and industrial closedcanopy oil palm plantations. Earth Syst. Sci. Data, 13(3), 1211-1231. https://doi.org/10.5194/essd-13-1211-2021 es_ES
dc.description.references Fagan, M.E. 2020. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Global Change Biology, 26(9), 4679-4690. https://doi.org/10.1111/gcb.15187 es_ES
dc.description.references Hansen, M.C., Krylov, A., Tyukavina, A., Potapov, P. v, Turubanova, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., y Moore, R. 2016. Humid tropical forest disturbance alerts using Landsat data. Environmental Research Letters, 11(3), 34008. https://doi.org/10.1088/1748-9326/11/3/034008 es_ES
dc.description.references Himeur, Y., Rimal, B., Tiwary, A., y Amira, A. 2022. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion, 86-87, 44-75. https://doi.org/10.1016/j.inffus.2022.06.003 es_ES
dc.description.references Hong, D., Hu, J., Yao, J., Chanussot, J., y Zhu, X.X. 2021. Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 68-80. https://doi.org/10.1016/j.isprsjprs.2021.05.011 es_ES
dc.description.references IAvH, y MADS. 2014. Mapa de coberturas de bosque seco tropical en Colombia (escala 1:100.000, 2.0v). 1 hoja cartográfica. http://www.humboldt.org.co/images/documentos/pdf/investigacion/ariza-et-al2014-memoria-tecnica-validacion.pdf es_ES
dc.description.references IDEAM. 2010. Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia Escala 1:100.000. (M. y E. Ambientales. Instituto de Hidrología, Ed.; p. 72). es_ES
dc.description.references IDEAM. 2016. Mapa de Bosque No Bosque Colombia Área Continental (p. Landsat). http://www.siac.gov.co/catalogo-de-mapas es_ES
dc.description.references Jin, H., y Mountrakis, G. 2022. Fusion of optical, radar and waveform LiDAR observations for land cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 187, 171-190. https://doi.org/10.1016/j.isprsjprs.2022.03.010 es_ES
dc.description.references Kellndorfer, J., Walker, W., Pierce, L., Dobson, C., Fites, J.A., Hunsaker, C., Vona, J., y Clutter, M. 2004. Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation datasets. Remote Sensing of Environment, 93, 339-358. https://doi.org/10.1016/j.rse.2004.07.017 es_ES
dc.description.references Lapini, A., Fontanelli, G., Pettinato, S., Santi, E., Paloscia, S., Tapete, D., y Cigna, F. 2020. Application of deep learning to optical and SAR images for the classification of agricultural areas in Italy. IEEE Geoscience and Remote Sensing Letters, 4163-4166. https://doi.org/10.1109/IGARSS39084.2020.9323190 es_ES
dc.description.references Lillesand, T.M., y Kiefer, R.W. 2000. Remote sensing and image interpretation (J.W. and Sons, Ed.; Fourth). Wiley. es_ES
dc.description.references Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., y Gordon, J.E. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491-505. https://doi.org/10.1111/j.1365-2699.2005.01424.x es_ES
dc.description.references Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., y Reiche, J. 2021. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing, 13(10). https://doi.org/10.3390/rs13101954 es_ES
dc.description.references NASA JPL. 2020. NASADEM Merged DEM Global 1 arc second. https://lpdaac.usgs.gov/products/nasadem_hgtv001/ es_ES
dc.description.references Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., y Hossard, L. 2018. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. In Remote Sensing, 10(8), 1217. https://doi.org/10.3390/rs10081217 es_ES
dc.description.references Olofsson, P., Foody, G.M., Stehman, S.V., y Woodcock, C.E. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment, 129(0), 122-131. https://doi.org/10.1016/j.rse.2012.10.031 es_ES
dc.description.references Olofsson, P., Foody, G.M., Herold, M., Stehman, S. v, Woodcock, C.E., y Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015 es_ES
dc.description.references Palomino-Ángel, S., Anaya-Acevedo, J.A., y Botero, B.A. 2019. Evaluation of 3B42V7 and IMERG dailyprecipitation products for a very high-precipitation region in northwestern South America. Atmospheric Research, 217, 37-48. https://doi.org/10.1016/j.atmosres.2018.10.012 es_ES
dc.description.references Pizano, C., y García, H. 2014. El bosque seco tropical en Colombia. Instituto de investigación de recursos biológicos Alexander von Humboldt. es_ES
dc.description.references Portillo-Quintero, C., Sanchez-Azofeifa, A., CalvoAlvarado, J., Quesada, M., y do Espirito Santo, M.M. 2015. The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Regional Environmental Change, 15(6), 1039-1049. https://doi.org/10.1007/s10113-014-0689-6 es_ES
dc.description.references Soudani, K., Delpierre, N., Berveiller, D., Hmimina, G., Vincent, G., Morfin, A., y Dufrêne, É. 2021. Potential of C-band Synthetic Aperture Radar Sentinel-1 timeseries for the monitoring of phenological cycles in a deciduous forest. International Journal of Applied Earth Observation and Geoinformation, 104, 102505. https://doi.org/10.1016/j.jag.2021.102505 es_ES
dc.description.references Vélez, D.A., y Álvarez-Mozos, J. 2020. Land use and land cover classification and change analysis in the area surrounding the manglares churute ecological reserve (Ecuador) using sentinel-1 time series. Revista de Teledeteccion, 2020(56), 131-146. https://doi.org/10.4995/raet.2020.14099 es_ES
dc.description.references Vollrath, A., Mullissa, A., y Reiche, J. 2020. AngularBased Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111867 es_ES
dc.description.references Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., y Ng, W.-T. 2018. How much does multitemporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007 es_ES
dc.description.references Whelen, T., y Siqueira, P. 2018. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sensing Letters, 9(5), 411-420. https://doi.org/10.1080/2150704X.2018.1430393 es_ES
dc.description.references Zhang, F., y Yang, X. 2020. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sensing of Environment, 251, 112105. https://doi.org/10.1016/j.rse.2020.112105 es_ES
dc.description.references Zhang, H., Li, J., Wang, T., Lin, H., Zheng, Z., Li, Y., y Lu, Y. 2018. A manifold learning approach to urban land cover classification with optical and radar data. Landscape and Urban Planning, 172, 11-24. https://doi.org/10.1016/j.landurbplan.2017.12.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem