Mostrar el registro sencillo del ítem
dc.contributor.author | Aguilera-Méndez, José María | es_ES |
dc.contributor.author | Juárez-Toledo, Carlos | es_ES |
dc.contributor.author | Tapia-Fabela, José Luis | es_ES |
dc.contributor.author | Martínez-Carrillo, Irma | es_ES |
dc.contributor.author | Hernández-Grajales, Raúl Vladimir | es_ES |
dc.coverage.spatial | east=-89.49456155592232; north=19.1895295606624; name=Península de Yucatán, Mèxic | es_ES |
dc.date.accessioned | 2023-02-08T08:18:41Z | |
dc.date.available | 2023-02-08T08:18:41Z | |
dc.date.issued | 2023-01-31 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/191706 | |
dc.description.abstract | [EN] The study objective is to develop a methodology, based on the application of numerical models, to forecast the transport routes of sargassum and favor decision-making for collecting on coasts. The work presents the behavior of the sargassum trajectory as a phenomenon dependent on the metoceanic variables, while the numerical methods are used as modeling tools that retain the most relevant information, and the systemic vision allows the analysis of the partial results through a segmented understanding of the problem to arrive at a full solution. In this research, two numerical output responses are considered that are implemented in a wave model based on Lagrangian equations to obtain the wave forecast. Finally, the results are processed by applying a Brownian system to calculate the movement of free-floating particles through the speed and diffusivity direction presented by an animation software. | es_ES |
dc.description.abstract | [ES] El objetivo del estudio es desarrollar una metodología, basada en la aplicación de modelos numéricos, para pronosticar las rutas de transporte del sargazo y favorecer la toma de decisiones de recolección en costas. El trabajo presenta el comportamiento de la trayectoria del sargazo como un fenómeno dependiente de las variables metoceánicas, mientras los métodos numéricos se utilizan como herramientas de modelado que retienen la información más relevante, y la visión sistémica permite el análisis de los resultados parciales a través de un entendimiento segmentado del problema para llegar a una solución completa. En esta investigación se consideran dos respuestas de salidas numéricas que se implementan en un modelo de olas basado en ecuaciones Lagrangianas para obtener el pronóstico de oleaje. Finalmente, los resultados son procesados aplicando un sistema Browniano para calcular el movimiento de partículas de libre flotación a través de la velocidad y dirección de difusividad representados en un software de animación. | es_ES |
dc.description.sponsorship | El autor principal del artículo agradece el apoyo económico recibido a través del programa de becas de posgrados del Consejo Nacional de Ciencia y Tecnología (CONACYT), México. Con número de referencia 766292. A la Secretaría de Investigación y Estudios Avanzados de la Universidad Autónoma del Estado de México. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Ingeniería del Agua | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Numerical models | es_ES |
dc.subject | Brownian movement | es_ES |
dc.subject | Sargassum | es_ES |
dc.subject | SWAN model | es_ES |
dc.subject | Alavai | es_ES |
dc.subject | Modelos numéricos | es_ES |
dc.subject | Movimiento Browniano | es_ES |
dc.subject | Sargazo | es_ES |
dc.subject | Modelo SWAN | es_ES |
dc.title | Modelación numérica de la trayectoria del sargazo pelágico utilizando ecuaciones Brownianas con aplicación a las aguas de la Península de Yucatán, México | es_ES |
dc.title.alternative | Numerical modeling of pelagic sargassum trajectory using Brownian equations with application to the waters of Yucatan Peninsula, Mexico | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ia.2023.18700 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//766292 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Aguilera-Méndez, JM.; Juárez-Toledo, C.; Tapia-Fabela, JL.; Martínez-Carrillo, I.; Hernández-Grajales, RV. (2023). Modelación numérica de la trayectoria del sargazo pelágico utilizando ecuaciones Brownianas con aplicación a las aguas de la Península de Yucatán, México. Ingeniería del Agua. 27(1):45-58. https://doi.org/10.4995/ia.2023.18700 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2023.18700 | es_ES |
dc.description.upvformatpinicio | 45 | es_ES |
dc.description.upvformatpfin | 58 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1886-4996 | |
dc.relation.pasarela | OJS\18700 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Agencia Espacial Europea (ESA). (n.d.). Sentinel-3-olci. Recuperado 5 de enero, 2023, de https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument | es_ES |
dc.description.references | Aguilera-Méndez, J.M., Juárez-Toledo, C., Martínez-Carrillo, I., & Vera-Popoca, R.I. (2021). Generation of unstructured meshes using Delaunay triangles for tidal analysis of the port of Acapulco, Mexico. Revista de Simulación y Laboratorio, 8(24), 20–27. https://doi.org/10.35429/JSL.2021.24.8.20.27 | es_ES |
dc.description.references | Aguilera-Méndez, J.M., Juárez-Toledo, C., Martínez-Carrillo, I., & Vera-Popoca, R.I. (2022). Use of unstructured meshes for wave height and particles horizontal displacement analysis in central zone Veracruz, Mexico. ECORFAN Journal-Taiwan, 6(11), 20–27. | es_ES |
dc.description.references | Amorocho, J., & DeVries, J.J. (1980). A new evaluation of the wind stress coefficient over water surfaces. Journal of Geophysical Research, 85(C1), 433. https://doi.org/10.1029/JC085iC01p00433 | es_ES |
dc.description.references | Arango, D.H.G., & Shchepetkin, D.A.F. (n.d.). Regional Ocean Modeling System. Recuperado 9 de enero, 2023, de https://www.myroms.org/ | es_ES |
dc.description.references | Automated Data Inquiry for Oil Spills. (2017). https://response.restoration.noaa.gov/adios-desktop | es_ES |
dc.description.references | Banas, N.S., & Hickey, B.M. (2005). Mapping exchange and residence time in a model of Willapa Bay, Washington, a branching, macrotidal estuary. Journal of Geophysical Research, 110(C11), C11011. https://doi.org/10.1029/2005JC002950 | es_ES |
dc.description.references | Banas, N.S., Hickey, B.M., MacCready, P., & Newton, J.A. (2004). Dynamics of Willapa Bay, Washington: A Highly Unsteady, Partially Mixed Estuary. Journal of Physical Oceanography, 34(11), 2413–2427. https://doi.org/10.1175/JPO2637.1 | es_ES |
dc.description.references | Banas, Neil S., McDonald, P.S., & Armstrong, D.A. (2009). Green Crab Larval Retention in Willapa Bay, Washington: An Intensive Lagrangian Modeling Approach. Estuaries and Coasts, 32(5), 893–905. https://doi.org/10.1007/s12237-009-9175-7 | es_ES |
dc.description.references | Binding, C.E., Greenberg, T.A., & Bukata, R.P. (2013). The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring. Journal of Great Lakes Research, 39, 100–107. https://doi.org/10.1016/j.jglr.2013.04.005 | es_ES |
dc.description.references | Binding, C.E., Greenberg, T.A., McCullough, G., Watson, S.B., & Page, E. (2018). An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. Journal of Great Lakes Research, 44(3), 436–446. https://doi.org/10.1016/j.jglr.2018.04.001 | es_ES |
dc.description.references | Booij, N., Ris, R.C., & Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666. https://doi.org/10.1029/98JC02622 | es_ES |
dc.description.references | Chávez, V., Uribe-Martínez, A., Cuevas, E., Rodríguez-Martínez, R.E., van Tussenbroek, B.I., Francisco, V., Estévez, M., Celis, L.B., Monroy-Velázquez, L.V., Leal-Bautista, R., Álvarez-Filip, L., García-Sánchez, M., Masia, L., & Silva, R. (2020). Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities. Water, 12(10), 2908. https://doi.org/10.3390/w12102908 | es_ES |
dc.description.references | Dagestad, K.-F., Röhrs, J., Breivik, Ø., & Ådlandsvik, B. (2018). OpenDrift v1.0: a generic framework for trajectory modelling. Geoscientific Model Development, 11(4), 1405–1420. https://doi.org/10.5194/gmd-11-1405-2018 | es_ES |
dc.description.references | ECMWF. (n.d.). European Centre for Medium-Range Weather Forecasts. Recuperado 9 de enero, 2023, from https://www.ecmwf.int | es_ES |
dc.description.references | Fyrillas, M.M., & Nomura, K.K. (2007). Diffusion and Brownian motion in Lagrangian coordinates. Journal of Chemical Physics, 126(16), 1–9. https://doi.org/10.1063/1.2717185 | es_ES |
dc.description.references | García, F., Palacio, C., & Garcia, U. (2009). Unestructured Mesh Generation for Numeric Models Implementation. Dyna, 76(157), 17–25. | es_ES |
dc.description.references | GEBCO Compilation Group. (2021). GEBCO. https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f | es_ES |
dc.description.references | General NOAA Operational Modeling Environment. (2022). Recuperado 20 de enero, 2023, de https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/response-tools/gnome.html | es_ES |
dc.description.references | George Mason University (GMU), & National Space Agency (NASA). (n.d.). GrADS. Recuperado 6 de enero, 2023, de http://cola.gmu.edu/grads/ | es_ES |
dc.description.references | Global Forecast System. (n.d.). Recuperado 30 de noviembre de 2022, de https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php | es_ES |
dc.description.references | Huang, Y., Weisberg, R.H., Zheng, L., & Zijlema, M. (2013). Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike. Journal of Geophysical Research: Oceans, 118(8), 3916–3938. https://doi.org/10.1002/jgrc.20283 | es_ES |
dc.description.references | Johns, E.M., Lumpkin, R., Putman, N.F., Smith, R.H., Muller-Karger, F.E., T. Rueda-Roa, D., Hu, C., Wang, M., Brooks, M.T., Gramer, L.J., & Werner, F.E. (2020). The establishment of a pelagic Sargassum population in the tropical Atlantic: Biological consequences of a basin-scale long distance dispersal event. Progress in Oceanography, 182(September 2019), 102269. https://doi.org/10.1016/j.pocean.2020.102269 | es_ES |
dc.description.references | Key, K. (2010). Triangle (1.9). http://marineemlab.ucsd.edu | es_ES |
dc.description.references | Kwon, K., Choi, B.-J., Kim, K.Y., & Kim, K. (2019). Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea. ALGAE, 34(4), 315–326. https://doi.org/10.4490/algae.2019.34.12.11 | es_ES |
dc.description.references | Legrand, S., Legat, V., & Deleersnijder, E. (2000). Delaunay mesh generation for an unstructured-grid ocean general circulation model. Ocean Modelling, 2(1–2), 17–28. https://doi.org/10.1016/S1463-5003(00)00005-6 | es_ES |
dc.description.references | Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., & Blanke, B. (2008). A Lagrangian tool for modelling ichthyoplankton dynamics. Environmental Modelling & Software, 23(9), 1210–1214. https://doi.org/10.1016/j.envsoft.2008.02.005 | es_ES |
dc.description.references | Lin, T., Pujos, C., Ou, C., Bi, W., Calvayrac, F., & Wang, Q.A. (2011). Path probability for a Brownian motion. Chinese Science Bulletin, 56(34), 3736–3740. https://doi.org/10.1007/s11434-011-4803-6 | es_ES |
dc.description.references | Marta-Almeida, M., Ruiz-Villarreal, M., Otero, P., Cobas, M., Peliz, A., Nolasco, R., Cirano, M., & Pereira, J. (2011). OOFɛ: A Python engine for automating regional and coastal ocean forecasts. Environmental Modelling & Software, 26(5), 680–682. https://doi.org/10.1016/j.envsoft.2010.11.015 | es_ES |
dc.description.references | MM5 Homepage. (2004). https://a.atmos.washington.edu/~ovens/newwebpage/mm5-home.html | es_ES |
dc.description.references | National Oceanic and Atmospheric Administration (NOAA). (n.d.-a). Global Forecast System (GFS) [0.5 Deg.]. Recuperado 7 de enero, 2023 de https://data.noaa.gov/dataset/dataset/global-forecast-system-gfs-0-5-deg | es_ES |
dc.description.references | National Oceanic and Atmospheric Administration (NOAA). (n.d.-b). NOMADS. Recuperado 7 de enero, 2023, de https://nomads.ncep.noaa.gov/ | es_ES |
dc.description.references | National Space Agency (NASA). (n.d.). OLCI. Recuperado 5 de enero, 2023, de https://www.earthdata.nasa.gov/sensors/olci | es_ES |
dc.description.references | Núñez, P., García, A., Mazarrasa, I., Juanes, J.A., Abascal, A.J., Méndez, F., Castanedo, S., & Medina, R. (2019). A methodology to assess the probability of marine litter accumulation in estuaries. Marine Pollution Bulletin, 144, 309–324. https://doi.org/10.1016/j.marpolbul.2019.04.077 | es_ES |
dc.description.references | Otero, P., Banas, N.S., & Ruiz-Villarreal, M. (2015). A surface ocean trajectories visualization tool and its initial application to the Galician coast. Environmental Modelling & Software, 66, 12–16. https://doi.org/10.1016/j.envsoft.2014.12.006 | es_ES |
dc.description.references | Putman, N.F., Lumpkin, R., Olascoaga, M.J., Trinanes, J., & Goni, G.J. (2020). Improving transport predictions of pelagic Sargassum. Journal of Experimental Marine Biology and Ecology, 529, 151398. https://doi.org/10.1016/j.jembe.2020.151398 | es_ES |
dc.description.references | Schwartz, M., & Brustein, R. (1988). From Lagrangian to Brownian motion. Journal of Statistical Physics, 51(3–4), 585–613. https://doi.org/10.1007/BF01028474 | es_ES |
dc.description.references | Shewchuk, J.R. (2002). Delaunay refinement algorithms for triangular mesh generation. Computational Geometry, 22(1–3), 21–74. https://doi.org/10.1016/S0925-7721(01)00047-5 | es_ES |
dc.description.references | Signoret, M., Bulit, C., & Pérez, R. (1998). Patrones de distribución de clorofila a y producción primaria en aguas del Golfo de México y del Mar Caribe. Hidrobiológica, 8(2), 81–88. http://www.redalyc.org/articulo.oa?id=57880201 | es_ES |
dc.description.references | Skamarock WC, et al. (2008). A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-468+STR. Natl. Cent. for Atmos. Res. Boulder, Colorado. | es_ES |
dc.description.references | Staff. (2019, July 10). 10 cosas que sabemos del sargazo. El Universal, 1. https://www.eluniversal.com.mx/destinos/13-cosas-quesabemos-del-sargazo-en-las-playas-de-quintana-roo | es_ES |
dc.description.references | Suárez, A.M., & Martínez-Daranas, B. (2018). La problemática del Sargazo en el caribe. In La problemática del Sargazo en el caribe. Adaptación basada en Ecosistemas: alternativa para la gestión sostenible de los recursos marinos y costeros del Caribe (Vol. 18, pp. 82–94). Instituto de Oceanología. | es_ES |
dc.description.references | Suzuki, T. (2011). Wave dissipation over vegetation fields. PhD thesis. TUDelft. | es_ES |
dc.description.references | Suzuki, T., & Arikawa, T. (2011). Numerical analysis of bulk drag coefficient in dense vegetation by immersed boundary method. Coastal Engineering Proceedings, 1(32), 48. https://doi.org/10.9753/icce.v32.waves.48 | es_ES |
dc.description.references | The WAVEWATCH Development Group (WW3DG). (2019). User manual and system documentation of WAVEWATCH III R version 6.07. In Tech. Note 333. | es_ES |
dc.description.references | WaveWatch III (WW3-GW) Global Wave Model. (2019). https://data.noaa.gov/dataset/dataset/wavewatch-iii-ww3-global-wavemodel2 | es_ES |
dc.description.references | Zheng, X., Mayerle, R., Wang, Y., & Zhang, H. (2018). Study of the wind drag coefficient during the storm Xaver in the German Bight using data assimilation. Dynamics of Atmospheres and Oceans, 83, 64–74. https://doi.org/10.1016/j.dynatmoce.2018.06.001 | es_ES |