Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Verón, M. A. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.date.accessioned | 2023-02-23T19:00:57Z | |
dc.date.available | 2023-02-23T19:00:57Z | |
dc.date.issued | 2022-04 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192056 | |
dc.description.abstract | [EN] This work is devoted to solve integral equations formulated in terms of the kernel functions and Nemytskii operators. This type of equations appear in different applied problems such as electrostatics and radiative heat transfer problems. We deal with both cases separable and non-separable kernels by setting the theoretical semilocal convergence results for an adequate iterative scheme that can be useful for approximating the solution of the infinite dimensional problem. We pay special attention to non-separable kernels avoiding the solution given in previous works where the original nonlinear integral equation has been approximated by means of an equation with separable kernel. However, in this case, we introduce an approximation of the derivative operator that it is needed for applying the iterative scheme considered. Moreover, we study the localization and separation of possible solutions of nonlinear integral equation by means of a result of semilocal convergence for the iterative scheme considered. The theoretical results obtained have been tested with some applied problems showing competitive results. (c) 2020 Elsevier B.V. All rights reserved. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Nemytskii operator | es_ES |
dc.subject | Non-separable kernel | es_ES |
dc.subject | Two-steps Newton iterative scheme | es_ES |
dc.subject | Domain of existence of solution | es_ES |
dc.subject | Domain of uniqueness of solution | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A reliable treatment to solve nonlinear Fredholm integral equations with non-separable kernel | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2020.113115 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Hernández-Verón, MA.; Martínez Molada, E.; Singh, S. (2022). A reliable treatment to solve nonlinear Fredholm integral equations with non-separable kernel. Journal of Computational and Applied Mathematics. 404:1-13. https://doi.org/10.1016/j.cam.2020.113115 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2020.113115 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 404 | es_ES |
dc.relation.pasarela | S\449502 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |