Hernández-Verón, MA.; Yadav, N.; Magreñán, AA.; Martínez Molada, E.; Singh, S. (2022). An improvement of the Kurchatov method by means of a parametric modification. Mathematical Methods in the Applied Sciences. 45(11):6844-6860. https://doi.org/10.1002/mma.8209
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192118
Title:
|
An improvement of the Kurchatov method by means of a parametric modification
|
Author:
|
Hernández-Verón, Miguel A.
Yadav, Nisha
Magreñán, A. Alberto
Martínez Molada, Eulalia
Singh, Sukhjit
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
|
Issued date:
|
|
Abstract:
|
[EN] In this work, a uniparametric generalization of the iterative method due to Kurchatov is presented. The iterative model presented is derivative-free and approximates the solution of nonlinear equations when the operator ...[+]
[EN] In this work, a uniparametric generalization of the iterative method due to Kurchatov is presented. The iterative model presented is derivative-free and approximates the solution of nonlinear equations when the operator is non-differenciable. As the accessibility of the Kurchatov method is usually a problem in the application of the method, since the set of initial guesses that guarantee the convergence of the method is small, the main objective of this work is to improve the Kurchatov iterative method in its accessibility while maintaining and even increasing its speed of convergence. For this purpose, we introduce a variable parameter in the iterative function of the Kurchatov method that allows us to get a better approximation of the derivative by using a symmetric uniparameteric first-order divided difference operator. We perform a complex dynamic study that corroborate the improvements in the accessibility region. Moreover, a complete analysis of the local and semilocal convergence is established for the new uniparametric iterative method. Finally, we apply the theoretical results to solve a nonlinear integral equation showing the usefulness of the work.
[-]
|
Subjects:
|
Divided differences
,
Dynamics
,
Kurchatov's iterative method
,
Local convergence study
,
Semilocal convergence study
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
Mathematical Methods in the Applied Sciences. (issn:
0170-4214
)
|
DOI:
|
10.1002/mma.8209
|
Publisher:
|
John Wiley & Sons
|
Publisher version:
|
https://doi.org/10.1002/mma.8209
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C21/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
info:eu-repo/grantAgreement/SERB//EEQ%2F2018%2F000720/
|
Thanks:
|
Ministerio de Economia y Competitividad, Grant/Award Number: EEQ/2018/000720 and PGC2018-095896-B-C21-C22; Science and Engineering Research Board
|
Type:
|
Artículo
|