- -

Assessing behavioral data science privacy issues in government artificial intelligence deployment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing behavioral data science privacy issues in government artificial intelligence deployment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saura, Jose Ramon es_ES
dc.contributor.author Ribeiro-Soriano, Domingo es_ES
dc.contributor.author Palacios Marqués, Daniel es_ES
dc.date.accessioned 2023-02-27T19:01:01Z
dc.date.available 2023-02-27T19:01:01Z
dc.date.issued 2022-10 es_ES
dc.identifier.issn 0740-624X es_ES
dc.identifier.uri http://hdl.handle.net/10251/192121
dc.description.abstract [EN] In today's global culture where the Internet has established itself as the main tool for communication and commerce, the capability to massively analyze and predict citizens' behavior has become a priority for governments in terms of collective intelligence and security. At the same time, in the context of novel possibilities that artificial intelligence (AI) brings to governments in terms of understanding and developing collective behavior analysis, important concerns related to citizens' privacy have emerged. In order to identify the main uses that governments make of AI and to define citizens' concerns about their privacy, in the present study, we undertook a systematic review of the literature, conducted in-depth interviews, and applied data-mining techniques. Based on our results, we classified and discussed the risks to citizens' privacy according to the types of AI strategies used by governments that may affect collective behavior and cause massive behavior modification. Our results revealed 11 uses of AI strategies used by the government to improve their interaction with citizens, organizations in cities, services provided by public institutions or the economy, among other areas. In relation to citizens' privacy when AI is used by governments, we identified 8 topics related to human behavior predictions, intelligence decision making, decision automation, digital surveillance, data privacy law and regulation, and the risk of behavior modification. The paper concludes with a discussion of the development of regulations focused on the ethical design of citizen data collection, where implications for governments are presented aimed at regulating security, ethics, and data privacy. Additionally, we propose a research agenda composed by 16 research questions to be investigated in further research. es_ES
dc.description.sponsorship In gratitude to the Ministry of Science, Innovation and Universities and the European Regional Development. Fund: RTI2018-096295-BC22. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Government Information Quarterly es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Behavioral data sciences es_ES
dc.subject Governments es_ES
dc.subject Collective behavior analysis es_ES
dc.subject Artificial intelligence es_ES
dc.subject Surveillance capitalism es_ES
dc.subject Privacy es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Assessing behavioral data science privacy issues in government artificial intelligence deployment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.giq.2022.101679 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096295-B-C22/ES/DIGITALIZACION Y APLICACION DE NUEVOS MODELOS DE NEGOCIO Y GOBERNANZA A LA EMPRESA COLABORATIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Saura, JR.; Ribeiro-Soriano, D.; Palacios Marqués, D. (2022). Assessing behavioral data science privacy issues in government artificial intelligence deployment. Government Information Quarterly. 39(4):1-17. https://doi.org/10.1016/j.giq.2022.101679 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.giq.2022.101679 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 39 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\483283 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem