Mostrar el registro sencillo del ítem
dc.contributor.author | Candelario Villalona, Giro Guillermo | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vassileva, Maria P. | es_ES |
dc.date.accessioned | 2023-02-27T19:01:06Z | |
dc.date.available | 2023-02-27T19:01:06Z | |
dc.date.issued | 2022-02 | es_ES |
dc.identifier.issn | 0893-9659 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192125 | |
dc.description.abstract | [EN] In recent papers, some fractional Newton-type methods have been proposed by using the Riemann-Liouville and Caputo fractional derivatives in their iterative schemes, with order 2 alpha or 1+alpha. In this manuscript, we introduce the Conformable fractional Newton-type method by using the so-called fractional derivative. The convergence analysis is made, proving its quadratic convergence, and the numerical results confirm the theory and improve the results obtained by classical Newton's method. Unlike previous fractional Newton-type methods, this one involves a low computational cost, and the order of convergence is at least quadratic. (C) 2021 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and by Dominican Republic FONDOCYT 2018-2019-1D2-140 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics Letters | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Conformable fractional derivatives | es_ES |
dc.subject | Newton's method | es_ES |
dc.subject | Quadratic convergence | es_ES |
dc.subject | Computational cost | es_ES |
dc.subject | Stability | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An optimal and low computational cost fractional Newton-type method for solving nonlinear equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.aml.2021.107650 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2018-2019-1D2-140/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Candelario Villalona, GG.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2022). An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. Applied Mathematics Letters. 124:1-8. https://doi.org/10.1016/j.aml.2021.107650 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.aml.2021.107650 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 124 | es_ES |
dc.relation.pasarela | S\447141 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |