- -

Risk analysis methods of water supply systems: comprehensive review from source to tap

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Risk analysis methods of water supply systems: comprehensive review from source to tap

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kombo-Mpindou, Gilver Odilon Mendel es_ES
dc.contributor.author Escuder Bueno, Ignacio es_ES
dc.contributor.author Chordà Ramón, Estela es_ES
dc.date.accessioned 2023-02-27T19:01:10Z
dc.date.available 2023-02-27T19:01:10Z
dc.date.issued 2022-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192128
dc.description.abstract [EN] Around 30-40 years ago, principles and methods were developed to conceptualise, assess and manage risk. These principles and methods are still, to a large extent, the foundation of the field. Over the past decade, many tools have been developed for risk analysis of water systems. Many advances have been made, both in the theoretical platform and in practical models and procedures. Various risk analysis approaches have been used to identify potential hazards, calculate the probability of accidents and assess the severity of consequences. The objective of this paper is to review these developments, focusing on the fundamental ideas and thinking behind them, considering their application at strategic, programmatic and operational levels of decision-making, in order to improve the understanding of stakeholders (researchers, regulators, etc.). To achieve this objective, scientific papers on risk analysis associated with water treatment systems were identified and reviewed, with particular focus on risk assessment methods (qualitative, semi-qualitative or quantitative, deterministic or probabilistic, etc.), tools (ETA, FTA, FMEA/FMECA, QMRA, HRA, Markov, etc.), applicability of these tools and results of case studies. A total of 141 references were selected on the basis of title sorting from databases as ScienceDirect, PubMed, Scopus, ISI Web of Science or SpringerLink, and a total of 68 articles were selected for full-text analysis. Main conclusions of this review and analysis efforts are as follows: (1) the scientific foundation of risk assessment and risk management is still an open issue; (2) principles, theories and base methods applicable to water supply systems are in continuous development, existing tools are suitable, and a growing number of applications are available and of great interest; and (3) risk analysis methodologies are in their journey to gain the necessary broad technical, community and political acceptance in the water treatment sector, and some gaps and opportunities have been included in the discussion. es_ES
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Applied Water Science (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Risk analysis es_ES
dc.subject Water supply systems es_ES
dc.subject Water safety es_ES
dc.subject Public health es_ES
dc.subject Decision-making es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Risk analysis methods of water supply systems: comprehensive review from source to tap es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13201-022-01586-7 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Kombo-Mpindou, GOM.; Escuder Bueno, I.; Chordà Ramón, E. (2022). Risk analysis methods of water supply systems: comprehensive review from source to tap. Applied Water Science (Online). 12(4):1-20. https://doi.org/10.1007/s13201-022-01586-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13201-022-01586-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2190-5495 es_ES
dc.relation.pasarela S\465461 es_ES
dc.description.references Akyuz, Emre, Erkan Celik (2015) A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. J Loss Prevent Proc Ind 38: 243–53. https://linkinghub.elsevier.com/retrieve/pii/S0950423015300498. es_ES
dc.description.references Ale BJM et al. (2006) Towards a causal model for air transport safety—an ongoing research project. Saf Sci 44(8): 657–73. https://linkinghub.elsevier.com/retrieve/pii/S0925753506000166. es_ES
dc.description.references Analouei R, Taheriyoun M, Safavi HR (2020) Risk assessment of an industrial wastewater treatment and reclamation plant using the bow-tie method. Environ Monit Assess 192(1):33. https://doi.org/10.1007/s10661-019-7995-x es_ES
dc.description.references Ang AH, Tang WH (1984) Probability concepts in engineering planning and design, decision risk and reliability, vol 2. John Wiley, USA es_ES
dc.description.references Aven T, Kørte J (2003) On the use of risk and decision analysis to support decision-making. Reliab Eng Syst Saf 79(3): 289–99. https://linkinghub.elsevier.com/retrieve/pii/S095183200200203X. es_ES
dc.description.references Aven T, Renn O (2009) The role of quantitative risk assessments for characterizing risk and uncertainty and delineating appropriate risk management options, with special emphasis on terrorism risk. Risk Analysis: an Int J 29(4):587–600 es_ES
dc.description.references Aven T, Zio E (2014) Foundational issues in risk assessment and risk management. Risk Anal 34(7):1164–1172. https://doi.org/10.1111/risa.12132 es_ES
dc.description.references Ayyub, Bilal M, Bilal M. Ayyub (2003) Risk Analysis in Engineering and Economics. Chapman and Hall/CRC. https://www.taylorfrancis.com/books/9780203497692. es_ES
dc.description.references Barker S. Fiona et al. (2013) Pathogen reduction requirements for direct potable reuse in Antarctica: evaluating human health risks in small communities. Sci Total Environ 461–462: 723–33. https://linkinghub.elsevier.com/retrieve/pii/S0048969713006025. es_ES
dc.description.references Beauchamp N, Lence BJ, Bouchard C (2010) Technical hazard identification in water treatment using fault tree analysis. Can J Civ Eng 37(6):897–906. https://doi.org/10.1139/L10-035 es_ES
dc.description.references Beim GK, Hobbs BF (1997) Event tree analysis of lock closure risks. J Water Res Plan Manag 123(3):169–178 es_ES
dc.description.references Benoit Barbeau, Pierre Payment, Jose´e Coallier, Bernard Cle´ment, Michèle Pre´vost (2000) Evaluating the risk of infection from the presence of giardia and cryptosporidium in drinking water. Quant Microbiol 37 es_ES
dc.description.references Booth R, Rogers J (2001) Using GIS technology to manage infrastructure capital assets. J-Am Water Works Assoc 93(11):62–68 es_ES
dc.description.references Bowles, John B, C. Enrique Peláez (1995) Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab Eng Syst Saf 50(2): 203–13. https://linkinghub.elsevier.com/retrieve/pii/095183209500068D. es_ES
dc.description.references Brandenburg, Marcus, Kannan Govindan, Joseph Sarkis, Stefan Seuring (2014) Quantitative models for sustainable supply chain management: developments and directions. Eur J Op Res 233(2): 299–312. https://linkinghub.elsevier.com/retrieve/pii/S037722171300787X. es_ES
dc.description.references Calixto E (2016) Gas and oil reliability engineering: modeling and analysis. Gulf Profe, Houston, Texas es_ES
dc.description.references Chiam, Tze Chao, Yuehwern Yih, Cary Mitchell (2009) Control policies for a water-treatment system using the Markov decision process. Part 2: simulation and analysis. Habitation 12(1): 27–32. http://openurl.ingenta.com/content/xref?genre=article&issn=1542-9660&volume=12&issue=1&spage=27. es_ES
dc.description.references Czado C, Brechmann EC (2014) Bayesian risk analysis. Risk—A Multidisciplinary Introduction. Springer International Publishing, Cham, pp 207–240. https://doi.org/10.1007/978-3-319-04486-6_8 es_ES
dc.description.references De Felice F, Zomparelli F, Petrillo A (2017) Functional human reliability analysis: a systems engineering perspective. 29. es_ES
dc.description.references Dhillon B (1989) Life cycle costing. Routledge. https://www.taylorfrancis.com/books/9781136773860. es_ES
dc.description.references Dinmohammadi F, Shafiee M (2013) A Fuzzy-FMEA risk assessment approach for offshore wind turbines. International Journal of Prognostics and Health Management: 10. es_ES
dc.description.references Doyle G, Grabinsky M (2003) Applying GIS to a water main corrosion study. Am Water Works Assoc J 95(5):90 es_ES
dc.description.references Embrey D, Kontogiannis T, Green M (1994) Guidelines for preventing human error in process safety. Center Chem Process Saf es_ES
dc.description.references Fahimnia, Behnam, Christopher S. Tang, Hoda Davarzani, Joseph Sarkis (2015) Quantitative models for managing supply chain risks: a review. Eur J Op Res 247(1): 1–15. https://linkinghub.elsevier.com/retrieve/pii/S0377221715003276. es_ES
dc.description.references Fu DZ, Li YP, Huang GH (2012) A fuzzy-Markov-chain-based analysis method for reservoir operation. Stoch Environ Res Risk Assess 26(3):375–391. https://doi.org/10.1007/s00477-011-0497-1 es_ES
dc.description.references García R, et al (2018) Plan de Seguridad Del Agua En Los Campos de Refugiados Saharauis En Tindouf (Argelia). Ingeniería del agua 22(1): 37. https://polipapers.upv.es/index.php/IA/article/view/7998. es_ES
dc.description.references Gheibi, Mohammad, Mohsen Karrabi, Mohammad Eftekhari (2019) Designing a smart risk analysis method for gas chlorination units of water treatment plants with combination of failure mode effects analysis, Shannon entropy, and petri net modeling. Ecotoxicol Environ Saf 171: 600–608. https://linkinghub.elsevier.com/retrieve/pii/S0147651319300417. es_ES
dc.description.references Gilchrist, Carol A, et al. (2018) Genetic diversity of cryptosporidium Hominis in a Bangladeshi community as revealed by whole-genome sequencing. J Infect Diseases 218(2): 259–64. https://academic.oup.com/jid/article/218/2/259/4920861. es_ES
dc.description.references Glickman, Theodore S, Erhan Erkut (2007) Assessment of Hazardous material risks for rail yard safety. Saf Sci 45(7): 813–22. https://linkinghub.elsevier.com/retrieve/pii/S0925753506001305. es_ES
dc.description.references Guerino V, Klaus CS (2017) Robust and efficient decision making for transmission expansion planning under uncertainty. Pontificia Universidad Catolica de Chile (Chile), Diss es_ES
dc.description.references Gunnarsdóttir MJ, Gardarsson SM, Bartram J (2012) Icelandic experience with water safety plans. Water Sci Technol 65(2): 277–88. https://iwaponline.com/wst/article/65/2/277/16390/Icelandic-experience-with-water-safety-plans. es_ES
dc.description.references Haas CN, Rose JB, Gerba CP (2014) Quantitative Microbial Risk Assessment. es_ES
dc.description.references Haimes YY (2009) On the complex definition of risk: a systems-based approach. Risk Anal 29(12):1647–1654. https://doi.org/10.1111/j.1539-6924.2009.01310.x es_ES
dc.description.references Hale, Andrew (2014) Foundations of safety science: a postscript. Saf Sci 67: 64–69. https://linkinghub.elsevier.com/retrieve/pii/S0925753514000605. es_ES
dc.description.references Hansson SO, Aven T (2014) Is risk analysis scientific? Risk Anal 34(7):1173–1183. https://doi.org/10.1111/risa.12230 es_ES
dc.description.references Hauptmanns U, Marx M, Knetsch T (2005) GAP—a fault-tree based methodology for analyzing occupational hazards. J Loss Prev Process Ind 18(2): 107–13. https://linkinghub.elsevier.com/retrieve/pii/S0950423005000197. es_ES
dc.description.references Heckmann, Iris, Tina Comes, Stefan Nickel (2015) A critical review on supply chain risk – definition, measure and modeling. Omega 52: 119–32. https://linkinghub.elsevier.com/retrieve/pii/S030504831400125X. es_ES
dc.description.references Hertz DB, Thomas H (1983) RISK ANALYSIS: IMPORTANT NEW TOOL FOR BUSINESS PLANNING. J Bus Strat 3(3):23–29. https://doi.org/10.1108/eb038974/full/html es_ES
dc.description.references Hollnagel, Erik (2014) Is safety a subject for science?. Saf Sci 67: 21–24. https://linkinghub.elsevier.com/retrieve/pii/S0925753513001756. es_ES
dc.description.references Hong, Eun-Soo et al. (2009) Quantitative risk evaluation based on event tree analysis technique: application to the design of shield TBM. Tunn Undergr Space Technol 24(3): 269–77. https://linkinghub.elsevier.com/retrieve/pii/S0886779808000862. es_ES
dc.description.references Howard G, Godfrey S, Tibatemwa S, Niwagaba C (2005) Water safety plans for piped urban supplies in developing countries: a case study from Kampala. Uganda. Urban Water J 2(3):161–170. https://doi.org/10.1080/15730620500236567 es_ES
dc.description.references Hunter PR, MacDonald AM, Carter RC (2010) Water supply and health. PLoS Med 7(11):e1000361. https://doi.org/10.1371/journal.pmed.1000361 es_ES
dc.description.references Hwang, Hwee, Kevin Lansey, Daniel R. Quintanar (2015) Resilience-based failure mode effects and criticality analysis for regional water supply system. J Hydroinf 17(2): 193–210. https://iwaponline.com/jh/article/17/2/193/3225/Resiliencebased-failure-mode-effects-and. es_ES
dc.description.references Jaidi, Kenza et al. (2009) Including operational data in QMRA model: development and impact of model inputs. J Water Health 7(1): 77–95. https://iwaponline.com/jwh/article/7/1/77/9925/Including-operational-data-in-QMRA-model. es_ES
dc.description.references Jean-Christophe Le Coze (2014) The foundations of safety science 1–5 es_ES
dc.description.references Jüttner U, Peck H, Christopher M (2003) Supply chain risk management: outlining an agenda for future research. Int J Logist Res Appl 6(4):197–210. https://doi.org/10.1080/13675560310001627016 es_ES
dc.description.references Kabir, Sohag, Yiannis Papadopoulos (2018) A review of applications of fuzzy sets to safety and reliability engineering. Int J Approx Reason 100: 29–55. https://linkinghub.elsevier.com/retrieve/pii/S0888613X18301671. es_ES
dc.description.references Kammen DM, Hassenzahl DM (1999) Should We Risk It? Princeton University Press, New Jersey. https://doi.org/10.1515/9780691188317/html es_ES
dc.description.references Kančev, Duško (2020) A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions. Nucl Eng Technol 52(9): 1983–89. https://linkinghub.elsevier.com/retrieve/pii/S1738573319308988. es_ES
dc.description.references Kaplan S (1997) The words of risk analysis. Risk Anal 17(4):407–417. https://doi.org/10.1111/j.1539-6924.1997.tb00881.x es_ES
dc.description.references Kaplan S, John Garrick B (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x es_ES
dc.description.references Kirmeyer GJ, Martel K (2001) Pathogen intrusion into the distribution system. Am Water Works Assoc es_ES
dc.description.references Kirwan, Barry (2017) A guide to practical human reliability assessment. CRC Press. https://www.taylorfrancis.com/books/9781351469883. es_ES
dc.description.references Kleiner Y, Adams BJ, Scott Rogers J (1998) Long-term planning methodology for water distribution system rehabilitation. Water Res Res 34(8):2039–2051. https://doi.org/10.1029/98WR00377 es_ES
dc.description.references Kletz, Trevor (2018) Hazop and Hazan. CRC Press. https://www.taylorfrancis.com/books/9781351441353. es_ES
dc.description.references Konstandinidou, Myrto, Zoe Nivolianitou, Chris Kiranoudis, and Nikolaos Markatos (2006) A fuzzy modeling application of CREAM methodology for human reliability analysis. Reliab Eng Syst Saf 91(6): 706–16. https://linkinghub.elsevier.com/retrieve/pii/S095183200500133X. es_ES
dc.description.references Lindhe, Andreas, Lars Rosén, Tommy Norberg, Olof Bergstedt (2009) Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems. Water Res 43(6): 1641–53. https://linkinghub.elsevier.com/retrieve/pii/S0043135408006568. es_ES
dc.description.references Lindhe A (2010) Risk assessment and decision support for managing drinking water systems. es_ES
dc.description.references Lindley TR, Buchberger SG (2002) Assessing intrusion susceptibility in distribution systems. J‐Am Water Works Assoc es_ES
dc.description.references Maier J, Allende JM (1999) Epistolario de Jorge Bonsor (1886–1930) (Vol. 6). Real Academia de la Historia. es_ES
dc.description.references Marhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites: on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Ind 24(5): 477–523. https://linkinghub.elsevier.com/retrieve/pii/S0950423011000325. es_ES
dc.description.references McLeod RW (2015) Designing for human reliability: human factors engineering in the oil, gas, and process industries. Gulf Prof Publ es_ES
dc.description.references Medema G, Ashbolt N (2006) MICRORISK-Microbiological risk assessment: a scientific basis for managing drinking water safety from source to tap. es_ES
dc.description.references Mohammadfam I, Mahmoudi S, Kianfar A (2012) Comparative safety assessment of chlorination unit in Tehran treatment plants with HAZOP & ETBA techniques. Procedia Eng 45: 27–30. https://linkinghub.elsevier.com/retrieve/pii/S187770581203127X. es_ES
dc.description.references Murphy, Enda, Eoin A. King (2016) Smartphone-based noise mapping: integrating sound level meter app data into the strategic noise mapping process. Sci Total Environ 562: 852–59. https://linkinghub.elsevier.com/retrieve/pii/S0048969716307501. es_ES
dc.description.references NRC U (1983) Risk Assessment in the Federal Government: Managing the Process. National Research Council, Washington es_ES
dc.description.references Park, Kyung S, Kwang T. Jung (1996) Considering performance shaping factors in situation-specific human error probabilities. Int J Ind Ergon 18(4): 325–31. https://linkinghub.elsevier.com/retrieve/pii/0169814196000182. es_ES
dc.description.references Peck H (2006) Reconciling supply chain vulnerability, risk and supply chain management. Int J Logist Res Appl 9(2):127–142. https://doi.org/10.1080/13675560600673578 es_ES
dc.description.references Petterson SR (2016) Application of a QMRA framework to inform selection of drinking water interventions in the developing context. Risk Anal 36(2):203–214. https://doi.org/10.1111/risa.12452 es_ES
dc.description.references Pond, Katherine et al. (2020) Improving risk assessments by sanitary inspection for small drinking-water supplies—qualitative evidence. Resources 9(6): 71. https://www.mdpi.com/2079-9276/9/6/71. es_ES
dc.description.references Rådbo, Helena, Inge Svedung, Ragnar Andersson (2008) Suicide prevention in railway systems: application of a barrier approach. Saf Sci 46(5): 729–37. https://linkinghub.elsevier.com/retrieve/pii/S0925753507000045. es_ES
dc.description.references Ravi Sankar N, Prabhu BS (2001) Modified approach for prioritization of failures in a system failure mode and effects analysis. Int J Qual Reliab Manag 18(3):324–336. https://doi.org/10.1108/02656710110383737/full/html es_ES
dc.description.references Reddi, Sashank J. et al. (2015) On variance reduction in stochastic gradient descent and its asynchronous variants. http://arxiv.org/abs/1506.06840. es_ES
dc.description.references Renn O (2008) Concepts of risk: an interdisciplinary review part 1: disciplinary risk concepts. GAIA—Ecol Perspect Sci Soc 17(1):50–66 es_ES
dc.description.references Roeger, Alexandra, António F. Tavares (2018) Water safety plans by utilities: a review of research on implementation. Utilities Policy 53: 15–24. https://linkinghub.elsevier.com/retrieve/pii/S0957178717302576. es_ES
dc.description.references Rollenhagen, Carl, Joakim Westerlund, Katharina Näswall (2013) Professional subcultures in nuclear power plants. Saf Sci 59: 78–85. https://linkinghub.elsevier.com/retrieve/pii/S0925753513001112. es_ES
dc.description.references Schijven J et al (2015) QMRAcatch: microbial quality simulation of water resources including infection risk assessment. J Environ Qual 44(5):1491–1502. https://doi.org/10.2134/jeq2015.01.0048 es_ES
dc.description.references Sempewo, Jotham Ivan, Lydia Kyokaali (2016) Prediction of the future condition of a water distribution network using a markov based approach: a case study of kampala water. Proc Eng 154: 374–83. https://linkinghub.elsevier.com/retrieve/pii/S1877705816318847. es_ES
dc.description.references Shafiee, Mahmood, Isaac Animah, Babakalli Alkali, David Baglee (2019) Decision support methods and applications in the upstream oil and gas sector. J Petrol Sci Eng 173: 1173–86. https://linkinghub.elsevier.com/retrieve/pii/S0920410518309185. es_ES
dc.description.references Sikandar S, Ishtiaque, S, Soomro N (2016) Hazard and Operability (HAZOP) study of wastewater treatment unit producing biohydrogen. Sindh Univ Res J-SURJ (Sci Ser) 48(1) es_ES
dc.description.references Smeets R (2008) Collecting the pieces of the FDI knowledge spillovers puzzle. The World Bank Res Obs 23(2):107–138. https://doi.org/10.1093/wbro/lkn003 es_ES
dc.description.references Sogbanmu TO, Aitsegame SO, Otubanjo OA, Odiyo JO (2020) Drinking water quality and human health risk evaluations in rural and urban areas of Ibeju-Lekki and Epe local government Areas, Lagos, Nigeria. Human and Ecol Risk Assess: an Int J 26(4):1062–1075. https://doi.org/10.1080/10807039.2018.1554428 es_ES
dc.description.references SRA (2015) Glossary Society for Risk Analysis. es_ES
dc.description.references Swain AD, Guttmann HE (1983) Handbook of human-reliability analysis with emphasis on nuclear power plant applications. es_ES
dc.description.references Swamee PK, Tyagi A (2000) Describing water quality with aggregate index. J Environ Eng 126(5):451–455 es_ES
dc.description.references Taheriyoun M, Moradinejad S (2015) Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environ Monit Assess 187(1):4186. https://doi.org/10.1007/s10661-014-4186-7 es_ES
dc.description.references Tang, Christopher S, Sean Zhou (2012) Research advances in environmentally and socially sustainable operations. Eur J Op Res 223(3): 585–94. https://linkinghub.elsevier.com/retrieve/pii/S0377221712005711. es_ES
dc.description.references Teunis PFM, Medema GJ, Kruidenier L, Havelaar AH (1997) Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Res 31(6): 1333–46. https://linkinghub.elsevier.com/retrieve/pii/S0043135496003879. es_ES
dc.description.references Tixier J, Dusserre G, Salvi O, Gaston D (2002) Review of 62 risk analysis methodologies of industrial plants. J Loss Prev Proc Ind 15(4): 291–303. https://linkinghub.elsevier.com/retrieve/pii/S0950423002000086. es_ES
dc.description.references Ugarelli, Rita, Jon Røstum (2012) Integrated urban water system. 127–45. https://doi.org/10.1007/978-1-4471-4661-2_9. es_ES
dc.description.references Viljoen, Johannes et al. (2010) Dried blood spot HIV-1 RNA quantification using open real-time systems in South Africa and Burkina Faso. JAIDS J Acq Immune Defic Synd 55(3): 290–98. https://journals.lww.com/00126334-201011010-00002. es_ES
dc.description.references Volkanovski, Andrija, Marko Čepin, Borut Mavko (2009) Application of the fault tree analysis for assessment of power system reliability. Reliab Eng Syst Saf 94(6): 1116–27. https://linkinghub.elsevier.com/retrieve/pii/S0951832009000210. es_ES
dc.description.references WHO (2008) Water Safety Plan Manual: Step-by-Step Risk Management for Drinking-Water Suppliers. Geneva, World Health Organization. (www.Who.Int/Water_sanitation_health/Publication_9789241562638/En/). es_ES
dc.description.references Wu T, Blackhurst JV (2009) Managing Supply Chain Risk and Vulnerability. In: Teresa Wu, Blackhurst J (eds) Modeling of supply chain risk under disruptions with performance measurement and robustness analysis. Springer, London es_ES
dc.description.references Zsidisin, George A (2003) A grounded definition of supply risk. J Purch Supply Manag 9(5–6): 217–24. https://linkinghub.elsevier.com/retrieve/pii/S1478409203000451. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem