E. Allen, <i>Modeling With Itô Stochastic Differential Equations</i>, Springer Science & Business Media, Dordrecht, Netherlands, 2007.
P. Almenar, L. Jódar, J. A. Martín.Mixed problems for the time-dependent telegraph equation: Continuous numerical solutions with a priori error bounds, <i>Mathematical and Computer Modelling</i>, <b>25</b> (1997), 31-44.
H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, A. K. Dhar, C. L. Browdy.A comparison of probabilistic and stochastic formulations in modelling growth uncertainty and variability, <i>Journal of Biological Dynamics</i>, <b>3</b> (2009), 130-148.
[+]
E. Allen, <i>Modeling With Itô Stochastic Differential Equations</i>, Springer Science & Business Media, Dordrecht, Netherlands, 2007.
P. Almenar, L. Jódar, J. A. Martín.Mixed problems for the time-dependent telegraph equation: Continuous numerical solutions with a priori error bounds, <i>Mathematical and Computer Modelling</i>, <b>25</b> (1997), 31-44.
H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, A. K. Dhar, C. L. Browdy.A comparison of probabilistic and stochastic formulations in modelling growth uncertainty and variability, <i>Journal of Biological Dynamics</i>, <b>3</b> (2009), 130-148.
J. C. Cortés, P. Sevilla-Peris, L. Jódar.Analytic-numerical approximating processes of diffusion equation with data uncertainty, <i>Computers & Mathematics with Applications</i>, <b>49</b> (2005), 1255-1266.
J. Calatayud, J. C. Cortés, M. Jornet.Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function, <i>Mathematical Methods in the Applied Sciences</i>, <b>42</b> (2019), 5649-5667.
J. C. Cortés, L. Jódar, L. Villafuerte, F. J. Camacho.Random Airy type differential equations: Mean square exact and numerical solutions, <i>Computers and Mathematics with Applications</i>, <b>60</b> (2010), 1237-1244.
J. Calatayud, J. C. Cortés, M. Jornet.Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: A comparative case study with random Fröbenius method and Monte Carlo simulation, <i>Open Mathematics</i>, <b>16</b> (2018), 1651-1666.
S. J. Farlow, <i>Partial Differential Equations for Scientists and Engineers</i>, Dover, New York, 1993.
G. B. Folland, <i>Fourier Analysis and Its Applications</i>, Brooks, Pacific Grove, CA, Wadsworth, 1992.
E. A. González-Velasco., <i>Fourier Analysis and Boundary Value Problems</i>, <b>${ref.volume}</b> (1995).
G. R. Grimmet, D. R. Stirzaker., <i>Probability and Random Process</i>, <b>${ref.volume}</b> (2001).
D. Henderson and P. Plaschko, <i>Stochastic Differential Equations in Science and Engineering</i>, World Scientific, Singapore, 2006.
L. Jódar, P. Almenar.Accurate continuous numerical solutions of time dependent mixed partial differential problems, <i>Computers & Mathematics with Applications</i>, <b>32</b> (1996), 5-19.
X. Mao, <i>Stochastic Differential Equations and Applications</i>, Elsevier, 2007.
T. Neckel and F. Rupp, <i>Random Differential Equations in Scientific Computing</i>, Walter de Gruyter, 2013.
F. Rodríguez, M. Roales, J. A. Martín.Exact solutions and numerical approximations of mixed problems for the wave equation with delay, <i>Applied Mathematics and Computation</i>, <b>219</b> (2012), 3178-3186.
S. Salsa, <i>Partial Differential Equations in Action, From Modelling to Theory</i>, Universitext, Springer-Verlag Italia, Milan, 2008.
T. T. Soong., <i>Random Differential Equations in Science and Engineering</i>, <b>${ref.volume}</b> (1973).
R. C. Smith, <i>Uncertainty Quantification: Theory, Implementation, and Applications</i>, SIAM, 2014.
L. Villafuerte, C. A. Braumann, J. C. Cortés, L. Jódar.Random differential operational calculus: Theory and applications, <i>Comput. Math. Appl.</i>, <b>59</b> (2010), 115-125.
D. Xiu., <i>Numerical Methods for Stochastic Computations: A Spectral Method Approach</i>, <b>${ref.volume}</b> (2010).
[-]