- -

Leveraging state-of-the-art engines for large-scale data analysis in High Energy Physics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Leveraging state-of-the-art engines for large-scale data analysis in High Energy Physics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Padulano, Vincenzo Eduardo es_ES
dc.contributor.author Kabadzhov, Ivan Donchev es_ES
dc.contributor.author Tejedor Saavedra, Enric es_ES
dc.contributor.author Guiraud, Enrico es_ES
dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.date.accessioned 2023-03-01T19:02:10Z
dc.date.available 2023-03-01T19:02:10Z
dc.date.issued 2023-02-10 es_ES
dc.identifier.issn 1570-7873 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192206
dc.description.abstract [EN] The Large Hadron Collider (LHC) at CERN has generated a vast amount of information from physics events, reaching peaks of TB of data per day which are then sent to large storage facilities. Traditionally, data processing workflows in the High Energy Physics (HEP) field have leveraged grid computing resources. In this context, users have been responsible for manually parallelising the analysis, sending tasks to computing nodes and aggregating the partial results. Analysis environments in this field have had a common building block in the ROOT software framework. This is the de facto standard tool for storing, processing and visualising HEP data. ROOT offers a modern analysis tool called RDataFrame, which can parallelise computations from a single machine to a distributed cluster while hiding most of the scheduling and result aggregation complexity from users. This is currently done by leveraging Apache Spark as the distributed execution engine, but other alternatives are being explored by HEP research groups. Notably, Dask has rapidly gained popularity thanks to its ability to interface with batch queuing systems, widespread in HEP grid computing facilities. Furthermore, future upgrades of the LHC are expected to bring a dramatic increase in data volumes. This paper presents a novel implementation of the Dask backend for the distributed RDataFrame tool in order to address the aforementioned future trends. The scalability of the tool with both the new backend and the already available Spark backend is demonstrated for the first time on more than two thousand cores, testing a real HEP analysis. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work benefited from the support of grant PID2020-113656RBC22 funded by Ministerio de Ciencia e Innovacion (Spain) MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Grid Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Root es_ES
dc.subject High energy physics es_ES
dc.subject Distributed computing es_ES
dc.subject Dask es_ES
dc.subject Spark es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Leveraging state-of-the-art engines for large-scale data analysis in High Energy Physics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10723-023-09645-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C22/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTES DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UPV/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Padulano, VE.; Kabadzhov, ID.; Tejedor Saavedra, E.; Guiraud, E.; Alonso-Jordá, P. (2023). Leveraging state-of-the-art engines for large-scale data analysis in High Energy Physics. Journal of Grid Computing. 21:1-21. https://doi.org/10.1007/s10723-023-09645-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10723-023-09645-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.relation.pasarela S\482341 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Apollinari, G., Béjar Alonso, I., Brüning, O., Fessia, P., Lamont, M., Rossi, L., Tavian, L.: High-luminosity large hadron collider (HL-LHC): technical design report V. 0.1. Technical report CERN. https://doi.org/10.23731/CYRM-2017-004 (2017) es_ES
dc.description.references Elsen, E.: A roadmap for HEP software and computing R&D for the 2020s. Comput Softw Big Sci, vol 16(3). https://doi.org/10.1007/s41781-019-0031-6 (2019) es_ES
dc.description.references Brun, R., Rademakers, F.: ROOT — an object oriented data analysis framework. Nuclear Instr. Methods Phys. Res. Section A Accelerators, Spectrometers, Detectors Assoc. Equip. 389(1), 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X. New computing techniques in physics research V es_ES
dc.description.references Blomer, J., Canal, P., Naumann, A., Piparo, D.: Evolution of the ROOT tree I/O. EPJ Web Conf. 245, 02030 (2020). https://doi.org/10.1051/epjconf/202024502030 es_ES
dc.description.references Lopez-Gomez, J., Blomer, J.: RNTUple performance: status and outlook. arXiv:2022.09043. https://doi.org/10.48550 es_ES
dc.description.references Piparo, D., Canal, P., Guiraud, E., Valls Pla, X., Ganis, G., Amadio, G., Naumann, A., Tejedor Saavedra, E.: RDAtaframe: easy parallel ROOT analysis at 100 threads. EPJ Web Conf. 214, 06029 (2019). https://doi.org/10.1051/epjconf/201921406029https://doi.org/10.1051/epjconf/201921406029 es_ES
dc.description.references Bird, I.: Computing for the large hadron collider. Annu. Rev. Nucl. Part. Sci. 61 (1), 99–118 (2011). https://doi.org/10.1146/annurev-nucl-102010-130059 es_ES
dc.description.references Team, R., Brann, K.A., Amadio, G., An, S., Bellenot, B., Blomer, J., Canal, P., Couet, O., Galli, M., Guiraud, E., Hageboeck, S., Linev, S., Vila, P.M., Moneta, L., Naumann, A., Tadel, A.M., Padulano, V.E., Rademakers, F., Shadura, O., Tadel, M., Saavedra, E.T., Pla, X.V., Vassilev, V., Wunsch, S.: Software challenges for HL-LHC data analysis. arXiv:2004.07675. 10.48550 (2020) es_ES
dc.description.references Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a Distributed Job Scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux. MIT Press (2001) es_ES
dc.description.references Jette, M., Dunlap, C., Garlick, J., Grondona, M.: Slurm: simple linux utility for resource management. Technical report, LLNL. https://www.osti.gov/biblio/15002962 (2002) es_ES
dc.description.references Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’10, p. 10. USENIX association. https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets (2010) es_ES
dc.description.references Rocklin, M.: Dask: parallel computation with blocked algorithms and task scheduling. In: Huff, K., Bergstra, J. (eds.) Proceedings of the 14th Python in Science Conference, pp. 130–136. SciPy (2015) es_ES
dc.description.references Rilee, M., Griessbaum, N., Kuo, K.-S., Frew, J., Wolfe, R.: STARE-based integrative analysis of diverse data using dask parallel programming demo paper. In: Proceedings of the 28th International Conference on Advances in Geographic Information Systems. SIGSPATIAL ’20, pp. 417–420. Association for computing machinery. https://doi.org/10.1145/3397536.3422346 (2020) es_ES
dc.description.references Gharat, J., Kumar, B., Ragha, L., Barve, A., Jeelani, S.M., Clyne, J.: Development of NCL equivalent serial and parallel python routines for meteorological data analysis. Int. J. High Performance Comput. Appl., https://doi.org/10.1177/10943420221077110 (2022) es_ES
dc.description.references Hamman, J.J., Rocklin, M., Abernathy, R.M.: Pangeo: a big-data ecosystem for scalable earth system science. In: 20th EGU General Assembly, EGU2018, p. 12146. The SAO/NASA astrophysics data system (ADS) (2018) es_ES
dc.description.references Fan, S., Linke, M., Paraskevakos, I., Gowers, R.J., Gecht, M., Beckstein, O.: PMDA - Parallel molecular dynamics analysis. In: Calloway, C., Lippa, D., Niederhut, D., Shupe, D. (eds.) Proceedings of the 18th Python in Science Conference, pp. 134–142. SciPy. https://doi.org/10.25080/Majora-7ddc1dd1-013 (2019) es_ES
dc.description.references Dask: dask.dataframe documentation. https://docs.dask.org/en/stable/dataframe.html . Accessed 25 Nov 2022 (2022) es_ES
dc.description.references Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 1, 145–164 (2016). https://doi.org/10.1007/s41060-016-0027-9 es_ES
dc.description.references Khan, M.A., Karim, M.R., Kim, Y.: A two-stage big data analytics framework with real world applications using spark machine learning and long Short-Term memory network. Symmetry, vol. 10(10). https://doi.org/10.3390/sym10100485 (2018) es_ES
dc.description.references Ramírez-Gallego, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Benítez, J.M., Alonso-Betanzos, A., Herrera, F.: An information theory-based feature selection framework for big data under apache spark. IEEE Trans. Syst. Man Cybern. Syst. 48(9), 1441–1453 (2018). https://doi.org/10.1109/TSMC.2017.2670926 es_ES
dc.description.references Chaudhari, A.A., Mulay, P.: SCSI: real-time data analysis with cassandra and spark, pp. 237–264. Springer. https://doi.org/10.1007/978-981-13-0550-4_11 (2019) es_ES
dc.description.references Shyam, R., Bharathi Ganesh, H.B., Sachin Kumar, S., Poornachandran, P., Soman, K.P.: Apache spark a big data analytics platform for smart grid. Proced. Technol. 21, 171–178 (2015). https://doi.org/10.1016/j.protcy.2015.10.085 es_ES
dc.description.references Shin, H., Lee, K., Kwon, H.: A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark. J. Supercomput. 78, 2556–2579 (2022). https://doi.org/10.1007/s11227-021-03946-7 es_ES
dc.description.references Graur, D., Müller, I., Proffitt, M., Fourny, G., Watts, G.T., Alonso, G.: Evaluating query languages and systems for high-energy physics data. Proc. VLDB Endow. 15(2), 154–168 (2021). https://doi.org/10.14778/3489496.3489498 es_ES
dc.description.references Feichtinger, D., Canal, P., Reed, C., Loizides, C., Ballintijn, M., Rademakers, F., Peters, A.J., Kickinger, G., Iwaszkiewicz, J., Ganis, G., Brun, R., Bellenot, B., Feichtinger, D., Canal, P., Reed, C., Loizides, C., Ballintijn, M., Rademakers, F., Peters, A.J., Kickinger, G., Iwaszkiewicz, J., Ganis, G., Brun, R., Bellenot, B.: PROOF - the parallel ROOT facility. In: 2006 15th IEEE International Conference on High Performance Distributed Computing, pp. 379–380. EDP sciences. https://doi.org/10.1109/HPDC.2006.1652193 (2006) es_ES
dc.description.references Chatrchyan, S., et al.: The CMS experiment at the CERN LHC. JINST 3, 08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004 es_ES
dc.description.references Sehrish, S., Kowalkowski, J., Paterno, M.: Spark and HPC for high energy physics data analyses. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1048–1057. IEEE, Lake Buena Vista, FL, USA. https://doi.org/10.1109/IPDPSW.2017.112(2017) es_ES
dc.description.references Gutsche, O., Cremonesi, M., Elmer, P., Jayatilaka, B., Kowalkowski, J., Pivarski, J., Sehrish, S., Surez, C.M., Svyatkovskiy, A., Tran, N.: Big data in HEP: a comprehensive use case study. J. Phys. Conf. Ser. 898, 072012 (2017). https://doi.org/10.1088/1742-6596/898/7/072012 es_ES
dc.description.references Gutsche, O., Canali, L., Cremer, I., Cremonesi, M., Elmer, P., Fisk, I., Girone, M., Jayatilaka, B., Kowalkowski, J., Khristenko, V., Motesnitsalis, E., Pivarski, J., Sehrish, S., Surdy, K., Svyatkovskiy, A.: CMS analysis and data reduction with apache spark. J. Phys. Conf. Ser. 1085, 042030 (2018). https://doi.org/10.1088/1742-6596/1085/4/042030 es_ES
dc.description.references Avati, V., Blaszkiewicz, M., Bocchi, E., Canali, L., Castro, D., Cervantes, J., Grzanka, L., Guiraud, E., Kaspar, J., Kothuri, P., Lamanna, M., Malawski, M., Mnich, A., Moscicki, J., Murali, S., Piparo, D., Tejedor, E.: Declarative big data analysis for high-energy physics: TOTEM use case. In: Yahyapour, R. (ed.) Euro-par 2019: Parallel Processing, pp. 241–255. Springer (2019) es_ES
dc.description.references Baranowski, Z., Kleszcz, E., Kothuri, P., Canali, L., Castellotti, R., Marquez, M.M., De Barros, N.G.M., Motesnitsalis, E., Mrowczynski, P., Duran, J.C.L.: Evolution of the hadoop platform and ecosystem for high energy physics. EPJ Web Conf. 214, 04058 (2019). https://doi.org/10.1051/epjconf/201921404058 es_ES
dc.description.references Adamec, M., Attebury, G., Bloom, K., Bockelman, B., Lundstedt, C., Shadura, O., Thiltges, J.: Coffea-casa: an analysis facility prototype. EPJ Web Conf. 251, 02061 (2021). https://doi.org/10.1051/epjconf/202125102061 es_ES
dc.description.references Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492 es_ES
dc.description.references Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., Baldeschwieler, E.: Apache hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC ’13. Association for computing machinery. https://doi.org/10.1145/2523616.2523633 (2013) es_ES
dc.description.references Kubernetes: homepage. https://kubernetes.io/. Accessed 25 Nov 2022 (2022) es_ES
dc.description.references NumPy: homepage. https://numpy.org/. Accessed 25 Nov 2022 (2022) es_ES
dc.description.references Pandas: homepage. https://pandas.pydata.org/. Accessed 25 Nov 2022 (2022) es_ES
dc.description.references Nitzberg, B., Schopf, J.M., Jones, J.P.: PBS pro: grid computing and scheduling attributes, pp. 183–190. Kluwer academic publishers, USA (2004) es_ES
dc.description.references Hudak, P.: Conception, evolution, and application of functional programming languages. ACM Comput. Surv. 21(3), 359–411 (1989). https://doi.org/10.1145/72551.72554 es_ES
dc.description.references Dozza, M., Bärgman, J., Lee, J.D.: Chunking: a procedure to improve naturalistic data analysis. Accident Anal. Prevention 58, 309–317 (2013). https://doi.org/10.1016/j.aap.2012.03.020 es_ES
dc.description.references Rew, R.: Chunking data: why it matters. https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking_data_why_it_matters (2013) es_ES
dc.description.references Padulano, V.E., Villanueva, J.C., Guiraud, E., Saavedra, E.T.: Distributed data analysis with ROOT RDataframe. EPJ Web Conf. 245, 03009 (2020). https://doi.org/10.1051/epjconf/202024503009 es_ES
dc.description.references Dask: dask.delayed documentation. https://docs.dask.org/en/stable/delayed.html. Accessed 25 Nov 2022 (2022) es_ES
dc.description.references Spark: web UI. Accessed 25 NOv 2022. https://spark.apache.org/docs/latest/web-ui.html (2022) es_ES
dc.description.references Dask: dashboard diagnostics. Accessed 25 Nov 2022. https://docs.dask.org/en/stable/dashboard.html(2022) es_ES
dc.description.references Wunsch, S.: Analysis of the di-muon spectrum using data from the CMS detector taken in 2012. https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ(2019) es_ES
dc.description.references Padulano, V.E.: Test suite repository. Accessed 25 Nov 2022. https://github.com/vepadulano/distRDF_benchmarks (2022) es_ES
dc.description.references Spark: tuning guide. Accessed 25 Nov 2022. https://spark.apache.org/docs/latest/tuning.html#level-of-parallelism (2022) es_ES
dc.description.references Gupta, A.: Building partitions for processing data files in apache spark. Accessed 25 Nov 2022. https://medium.com/swlh/building-partitions-for-processing-data-files-in-apache-spark-2ca40209c9b7 (2020) es_ES
dc.description.references Bertolucci, M., Carlini, E., Dazzi, P., Lulli, A., Ricci, L.: Static and dynamic big data partitioning on apache spark, vol. 27, pp. 489–498. IOS Press. https://doi.org/10.3233/978-1-61499-621-7-489 (2016) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem