Mostrar el registro sencillo del ítem
dc.contributor.author | Veyna-Robles, Uriel | es_ES |
dc.contributor.author | Blasco, Xavier | es_ES |
dc.contributor.author | Herrero Durá, Juan Manuel | es_ES |
dc.contributor.author | Pajares-Ferrando, Alberto | es_ES |
dc.date.accessioned | 2023-03-02T19:01:37Z | |
dc.date.available | 2023-03-02T19:01:37Z | |
dc.date.issued | 2023-03 | es_ES |
dc.identifier.issn | 0952-1976 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192258 | |
dc.description.abstract | [EN] Advanced control systems are tuned using dynamic models and optimization techniques. This approach frequently involves satisfying multiple conflicting objectives. Tuning robust controllers requires considering a framework that represents the system uncertainties, and its definition is not a trivial task. When dealing with a nonlinear model with many parameters, a high-quality representation requires a massive sampling of variations. In many cases, this represents an inaccessible computational cost for the optimization process. This work presents a new methodology for parameter uncertainty modeling that is oriented to tuning robust controllers based on multiobjective optimization techniques. The uncertainty modeling formulated represents a feasible computational cost and leads to robust solutions without attributing excessive conservatism. The novelty of this process consists in using the multiobjective space to define a set of scenarios with highly representative properties of the global uncertainty framework that formulate the control problem under a predefined minimization strategy. To demonstrate the effectiveness of this methodology, we present a temperature control design in a micro-CHP system under worst-case minimization. Based on the results, particular interest is given to verifying the appropriate formulation of the uncertainty modeling, which represents a 92.8% reduction of the computational cost involved in solving the robust optimization problem under a global uncertainty framework. | es_ES |
dc.description.sponsorship | This work was supported in part by grant PID2021-124908NB-I00 founded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe"; by grant SP20200109 (PAID-10-20) funded by Universitat Politecnica de Valencia; and by grant PRE2019-087579 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future"; and by the Generalitat Valenciana regional government through project CIAICO/2021/064. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Applications of Artificial Intelligence | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Multiobjective optimization | es_ES |
dc.subject | Temperature control | es_ES |
dc.subject | Parameter uncertainties | es_ES |
dc.subject | Micro-CHP system | es_ES |
dc.subject | Worst-case | es_ES |
dc.subject | Robustness | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Parameter uncertainty modeling for multiobjective robust control design. Application to a temperature control system in a proton exchange membrane fuel cell | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engappai.2022.105758 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-124908NB-I00//DESARROLLO DE HERRAMIENTAS DE OPTIMIZACIÓN MULTIOBJETIVO PARA PROBLEMAS DE INGENIERÍA CON INCERTIDUMBRE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2019-087579//AYUDA PREDOCTORAL AEI-VEYNA ROBLES. PROYECTO: HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIAICO%2F2021%2F064//DESARROLLO DE HERRAMIENTAS DE OPTIMIZACION MULTIOBJETO PARA PROBLEMAS CON INCERTIDUMBRE. APLICACIÓN A PROBLEMAS DE CONTROL Y DE GESTION DE ENERGIA EN SISTEMAS MICROCHP BASADOS EN PILAR DE HIDROGENO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//PAID-10-20//Exploración y explotación de técnicas de optimización multiobjetivo en ingeniería de sistemas./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20200109/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Veyna-Robles, U.; Blasco, X.; Herrero Durá, JM.; Pajares-Ferrando, A. (2023). Parameter uncertainty modeling for multiobjective robust control design. Application to a temperature control system in a proton exchange membrane fuel cell. Engineering Applications of Artificial Intelligence. 119:1-18. https://doi.org/10.1016/j.engappai.2022.105758 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engappai.2022.105758 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 119 | es_ES |
dc.relation.pasarela | S\480982 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |