- -

Towards the Automation of Infrared Thermography Inspections for Industrial Maintenance Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards the Automation of Infrared Thermography Inspections for Industrial Maintenance Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Venegas, Pablo es_ES
dc.contributor.author Ivorra, Eugenio es_ES
dc.contributor.author Ortega Pérez, Mario es_ES
dc.contributor.author Sáez de Ocáriz, Idurre es_ES
dc.date.accessioned 2023-03-08T19:00:52Z
dc.date.available 2023-03-08T19:00:52Z
dc.date.issued 2022-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192445
dc.description.abstract [EN] The maintenance of industrial equipment extends its useful life, improves its efficiency, reduces the number of failures, and increases the safety of its use. This study proposes a methodology to develop a predictive maintenance tool based on infrared thermographic measures capable of anticipating failures in industrial equipment. The thermal response of selected equipment in normal operation and in controlled induced anomalous operation was analyzed. The characterization of these situations enabled the development of a machine learning system capable of predicting malfunctions. Different options within the available conventional machine learning techniques were analyzed, assessed, and finally selected for electronic equipment maintenance activities. This study provides advances towards the robust application of machine learning combined with infrared thermography and augmented reality for maintenance applications of industrial equipment. The predictive maintenance system finally selected enables automatic quick hand-held thermal inspections using 3D object detection and a pose estimation algorithm, making predictions with an accuracy of 94% at an inference time of 0.006 s. es_ES
dc.description.sponsorship FundingThe MANTRA project was funded by the Spanish Ministry of Economy and Competitiveness, through its program Retos-Colaboracion, with grant number RTC-2017-6312-7. This research was also partially supported by the CODISAVA2 project, which was funded by the Basque Government through the ELKARTEK 2020 program, with file number KK-2020/00044. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Infrared thermography es_ES
dc.subject Maintenance es_ES
dc.subject Industrial equipment es_ES
dc.subject Machine learning es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Towards the Automation of Infrared Thermography Inspections for Industrial Maintenance Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s22020613 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2017-6312-7//MANTRA project/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Venegas, P.; Ivorra, E.; Ortega Pérez, M.; Sáez De Ocáriz, I. (2022). Towards the Automation of Infrared Thermography Inspections for Industrial Maintenance Applications. Sensors. 22(2):1-22. https://doi.org/10.3390/s22020613 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s22020613 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 35062570 es_ES
dc.identifier.pmcid PMC8778373 es_ES
dc.relation.pasarela S\454239 es_ES
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem