- -

Constrained multiple instance learning for ulcerative colitis prediction using histological images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Constrained multiple instance learning for ulcerative colitis prediction using histological images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Amor, Rocío es_ES
dc.contributor.author Meseguer, Pablo es_ES
dc.contributor.author Lorenzo Parigi, Tommaso es_ES
dc.contributor.author Villanacci, Vincenzo es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Launet, Laetitia es_ES
dc.contributor.author Bazarova, Alina es_ES
dc.contributor.author Tontini, Gian Eugenio es_ES
dc.contributor.author Bisschops, Raf es_ES
dc.contributor.author De Hertogh, Gert es_ES
dc.contributor.author Ferraz, Jose G. es_ES
dc.contributor.author Götz, Martin es_ES
dc.contributor.author Gui, Xianyong es_ES
dc.contributor.author Hayee, Bu Hussain es_ES
dc.contributor.author Lazarev, Mark es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2023-03-08T19:00:57Z
dc.date.available 2023-03-08T19:00:57Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192447
dc.description.abstract [EN] Background and Objective: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) affecting the colon and the rectum characterized by a remitting-relapsing course. To detect mucosal inflammation as-sociated with UC, histology is considered the most stringent criteria. In turn, histologic remission (HR) correlates with improved clinical outcomes and has been recently recognized as a desirable treatment target. The leading biomarker for assessing histologic remission is the presence or absence of neutrophils. Therefore, the finding of this cell in specific colon structures indicates that the patient has UC activity. However, no previous studies based on deep learning have been developed to identify UC based on neu-trophils detection using whole-slide images (WSI). Methods: The methodological core of this work is a novel multiple instance learning (MIL) framework with location constraints able to determine the presence of UC activity using WSI. In particular, we put forward an effective way to introduce constraints about positive instances to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. In addition, we propose a new weighted embedding to enlarge the relevance of the positive instances. Results: Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-MIL, demon-strate that using the location information we can improve considerably the results at WSI-level. In com-parison with prior MIL settings, our method allows for 10% improvements in bag-level accuracy. Conclusion : Our model, which introduces a new form of constraints, surpass the results achieved from current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to other histological concerns where the morphological features determining a positive WSI are tiny and similar to others in the image. es_ES
dc.description.sponsorship This work has received funding from Horizon 2020, the European Unions Framework Programme for Research and Innovation, under grant agreement No. 860627 (CLARIFY) , the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN) and GVA through projects PROMETEO/2019/109 and INNEST/2021/321 (SAMUEL) . Roco del Amor and Adrin Colomer work have also been supported by the Spanish Government under FPU Grant (FPU20/05263) and the Universitat Politcnica de Valncia (PAID-10-21-Subprograma 1), respectively. We gratefully acknowledge the support from the Generalitat Valenciana (GVA) with the donation of the DGX A100 used for this work, action co-financed by the European Union through the Operational Program of the European Regional Development Fund of the Comunitat Valenciana 2014¿2020 (IDIFEDER/2020/030). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Histologic remission es_ES
dc.subject Location constraints es_ES
dc.subject Neutrophils es_ES
dc.subject Attention-embedding weights es_ES
dc.subject Ulcerative colitis es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Constrained multiple instance learning for ulcerative colitis prediction using histological images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2022.107012 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-21/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Del Amor, R.; Meseguer, P.; Lorenzo Parigi, T.; Villanacci, V.; Colomer, A.; Launet, L.; Bazarova, A.... (2022). Constrained multiple instance learning for ulcerative colitis prediction using histological images. Computer Methods and Programs in Biomedicine. 224:1-8. https://doi.org/10.1016/j.cmpb.2022.107012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2022.107012 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 224 es_ES
dc.identifier.pmid 35843078 es_ES
dc.relation.pasarela S\473631 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem