Mostrar el registro sencillo del ítem
dc.contributor.author | del Amor, Rocío | es_ES |
dc.contributor.author | Meseguer, Pablo | es_ES |
dc.contributor.author | Lorenzo Parigi, Tommaso | es_ES |
dc.contributor.author | Villanacci, Vincenzo | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Launet, Laetitia | es_ES |
dc.contributor.author | Bazarova, Alina | es_ES |
dc.contributor.author | Tontini, Gian Eugenio | es_ES |
dc.contributor.author | Bisschops, Raf | es_ES |
dc.contributor.author | De Hertogh, Gert | es_ES |
dc.contributor.author | Ferraz, Jose G. | es_ES |
dc.contributor.author | Götz, Martin | es_ES |
dc.contributor.author | Gui, Xianyong | es_ES |
dc.contributor.author | Hayee, Bu Hussain | es_ES |
dc.contributor.author | Lazarev, Mark | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2023-03-08T19:00:57Z | |
dc.date.available | 2023-03-08T19:00:57Z | |
dc.date.issued | 2022-09 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192447 | |
dc.description.abstract | [EN] Background and Objective: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) affecting the colon and the rectum characterized by a remitting-relapsing course. To detect mucosal inflammation as-sociated with UC, histology is considered the most stringent criteria. In turn, histologic remission (HR) correlates with improved clinical outcomes and has been recently recognized as a desirable treatment target. The leading biomarker for assessing histologic remission is the presence or absence of neutrophils. Therefore, the finding of this cell in specific colon structures indicates that the patient has UC activity. However, no previous studies based on deep learning have been developed to identify UC based on neu-trophils detection using whole-slide images (WSI). Methods: The methodological core of this work is a novel multiple instance learning (MIL) framework with location constraints able to determine the presence of UC activity using WSI. In particular, we put forward an effective way to introduce constraints about positive instances to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. In addition, we propose a new weighted embedding to enlarge the relevance of the positive instances. Results: Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-MIL, demon-strate that using the location information we can improve considerably the results at WSI-level. In com-parison with prior MIL settings, our method allows for 10% improvements in bag-level accuracy. Conclusion : Our model, which introduces a new form of constraints, surpass the results achieved from current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to other histological concerns where the morphological features determining a positive WSI are tiny and similar to others in the image. | es_ES |
dc.description.sponsorship | This work has received funding from Horizon 2020, the European Unions Framework Programme for Research and Innovation, under grant agreement No. 860627 (CLARIFY) , the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN) and GVA through projects PROMETEO/2019/109 and INNEST/2021/321 (SAMUEL) . Roco del Amor and Adrin Colomer work have also been supported by the Spanish Government under FPU Grant (FPU20/05263) and the Universitat Politcnica de Valncia (PAID-10-21-Subprograma 1), respectively. We gratefully acknowledge the support from the Generalitat Valenciana (GVA) with the donation of the DGX A100 used for this work, action co-financed by the European Union through the Operational Program of the European Regional Development Fund of the Comunitat Valenciana 2014¿2020 (IDIFEDER/2020/030). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Histologic remission | es_ES |
dc.subject | Location constraints | es_ES |
dc.subject | Neutrophils | es_ES |
dc.subject | Attention-embedding weights | es_ES |
dc.subject | Ulcerative colitis | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Constrained multiple instance learning for ulcerative colitis prediction using histological images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2022.107012 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-21/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860627/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2020%2F030/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Del Amor, R.; Meseguer, P.; Lorenzo Parigi, T.; Villanacci, V.; Colomer, A.; Launet, L.; Bazarova, A.... (2022). Constrained multiple instance learning for ulcerative colitis prediction using histological images. Computer Methods and Programs in Biomedicine. 224:1-8. https://doi.org/10.1016/j.cmpb.2022.107012 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2022.107012 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 224 | es_ES |
dc.identifier.pmid | 35843078 | es_ES |
dc.relation.pasarela | S\473631 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |