Ugidos, M.; Nueda, MJ.; Prats-Montalbán, JM.; Ferrer, A.; Conesa, A.; Tarazona, S. (2022). MultiBaC: an R package to remove batch effects in multi-omic experiments. Bioinformatics. 38(9):2657-2658. https://doi.org/10.1093/bioinformatics/btac132
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192509
Title:
|
MultiBaC: an R package to remove batch effects in multi-omic experiments
|
Author:
|
Ugidos, Manuel
Nueda, María José
Prats-Montalbán, José Manuel
Ferrer, Alberto
Conesa, Ana
Tarazona, Sonia
|
UPV Unit:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
|
Issued date:
|
|
Abstract:
|
[EN] Motivation: Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics ...[+]
[EN] Motivation: Batch effects in omics datasets are usually a source of technical noise that masks the biological signal and hampers data analysis. Batch effect removal has been widely addressed for individual omics technologies. However, multi-omic datasets may combine data obtained in different batches where omics type and batch are often confounded. Moreover, systematic biases may be introduced without notice during data acquisition, which creates a hidden batch effect. Current methods fail to address batch effect correction in these cases.
Results: In this article, we introduce the MultiBaC R package, a tool for batch effect removal in multi-omics and hidden batch effect scenarios. The package includes a diversity of graphical outputs for model validation and assessment of the batch effect correction.
[-]
|
Subjects:
|
Multi-omic datasets
,
Batch effect
|
Copyrigths:
|
Reconocimiento - No comercial (by-nc)
|
Source:
|
Bioinformatics. (issn:
1367-4803
)
|
DOI:
|
10.1093/bioinformatics/btac132
|
Publisher:
|
Oxford University Press
|
Publisher version:
|
https://doi.org/10.1093/bioinformatics/btac132
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119537RB-I00/ES/INTEGRACION DE DATOS MULTI-OMICOS PARA LA INFERENCIA DE MODELOS MULTI-CAPA DE ENFERMEDAD/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO GRUPOS DE EXCELENCIA//The Next Systems Biology: desarrollo de métodos estadísticos para la biología de sistemas multiómica/
info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//PROMETEO%2F2016%2F093//The Next Systems Biology: desarrollo de métodos estadísticos para la biología de sistemas multiómica/
|
Thanks:
|
This work was funded by the Generalitat Valenciana through PROMETEO grants program for excellence research groups [PROMETEO 2016/093] and by the Spanish MICINN [PID2020-119537RB-I00]. Funding for open access charge: ...[+]
This work was funded by the Generalitat Valenciana through PROMETEO grants program for excellence research groups [PROMETEO 2016/093] and by the Spanish MICINN [PID2020-119537RB-I00]. Funding for open access charge: Universitat Politecnica de Valencia.
[-]
|
Type:
|
Artículo
|