- -

Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguado-Sarrió, E. es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Sanz-Requena, R. es_ES
dc.contributor.author Duchesne, C. es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2023-03-20T19:01:05Z
dc.date.available 2023-03-20T19:01:05Z
dc.date.issued 2022-07-15 es_ES
dc.identifier.issn 0169-7439 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192523
dc.description.abstract [EN] In current radiology practice, multi-parametric magnetic resonance imaging (mpMRI) has recently become a key tool in diagnostic and therapeutic decisions. Although it is based on the subjective assessment of T2-weighted images, as well as perfusion-weighted and diffusion-weighted sequences, further quantitative parameters can also be derived from them for improving lesion phenotyping. Despite these parameters are usually exploited in a univariate way, ignoring the benefits of a real multivariate approach, still it is the gold standard imaging technique to assess prostate cancer location and probability of malignancy. In this paper, pharmacokinetic (perfusion) and exponential (diffusion) clinical models, as well as latent variable-based multivariate statistical models like multivariate curve resolution-alternating least squares (MCR-ALS), have been calculated and analyzed with sequential multi block-partial least squares discriminant analysis (SMB-PLS-DA) including technique-block differentiation, in order to better assess for cancer aggressiveness based on Gleason scales. The best prediction result was achieved by the ordered combination of diffusion blocks (MCR-ALS and exponential models) and normalized T2 values. The perfusion blocks did not improve the results obtained by diffusion and T2-weighted based parameters alone, so they can be removed from the SMB-PLS-DA model. es_ES
dc.description.sponsorship Acknowledgements This research was partially supported by the Spanish Government (Science and Innovation Ministry) under the project PID2020-119262RB-I00, and by the Generalitat Valenciana under the project AICO/2021/111. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2022.104588 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119262RB-I00/ES/TECNICAS ESTADISTICAS MULTIVARIANTES BASADAS EN VARIABLES LATENTES PARA EL DESARROLLO DE BIOMARCADORES DE IMAGEN PARA LA DIAGNOSIS Y PROGNOSIS DE CANCER DE MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F111//OPTIMIZACIÓN DE PROCESOS EN LA INDUSTRIA 4.0 MEDIANTE TÉCNICAS ESTADÍSTICAS MULTIVARIANTES (INDOPT4.0)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Aguado-Sarrió, E.; Prats-Montalbán, JM.; Sanz-Requena, R.; Duchesne, C.; Ferrer, A. (2022). Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging. Chemometrics and Intelligent Laboratory Systems. 226:1-13. https://doi.org/10.1016/j.chemolab.2022.104588 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.chemolab.2022.104588 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 226 es_ES
dc.relation.pasarela S\469561 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem