Mostrar el registro sencillo del ítem
dc.contributor.author | Aguado-Sarrió, E. | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Sanz-Requena, R. | es_ES |
dc.contributor.author | Duchesne, C. | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2023-03-20T19:01:05Z | |
dc.date.available | 2023-03-20T19:01:05Z | |
dc.date.issued | 2022-07-15 | es_ES |
dc.identifier.issn | 0169-7439 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192523 | |
dc.description.abstract | [EN] In current radiology practice, multi-parametric magnetic resonance imaging (mpMRI) has recently become a key tool in diagnostic and therapeutic decisions. Although it is based on the subjective assessment of T2-weighted images, as well as perfusion-weighted and diffusion-weighted sequences, further quantitative parameters can also be derived from them for improving lesion phenotyping. Despite these parameters are usually exploited in a univariate way, ignoring the benefits of a real multivariate approach, still it is the gold standard imaging technique to assess prostate cancer location and probability of malignancy. In this paper, pharmacokinetic (perfusion) and exponential (diffusion) clinical models, as well as latent variable-based multivariate statistical models like multivariate curve resolution-alternating least squares (MCR-ALS), have been calculated and analyzed with sequential multi block-partial least squares discriminant analysis (SMB-PLS-DA) including technique-block differentiation, in order to better assess for cancer aggressiveness based on Gleason scales. The best prediction result was achieved by the ordered combination of diffusion blocks (MCR-ALS and exponential models) and normalized T2 values. The perfusion blocks did not improve the results obtained by diffusion and T2-weighted based parameters alone, so they can be removed from the SMB-PLS-DA model. | es_ES |
dc.description.sponsorship | Acknowledgements This research was partially supported by the Spanish Government (Science and Innovation Ministry) under the project PID2020-119262RB-I00, and by the Generalitat Valenciana under the project AICO/2021/111. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2022.104588 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119262RB-I00/ES/TECNICAS ESTADISTICAS MULTIVARIANTES BASADAS EN VARIABLES LATENTES PARA EL DESARROLLO DE BIOMARCADORES DE IMAGEN PARA LA DIAGNOSIS Y PROGNOSIS DE CANCER DE MAMA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F111//OPTIMIZACIÓN DE PROCESOS EN LA INDUSTRIA 4.0 MEDIANTE TÉCNICAS ESTADÍSTICAS MULTIVARIANTES (INDOPT4.0)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Aguado-Sarrió, E.; Prats-Montalbán, JM.; Sanz-Requena, R.; Duchesne, C.; Ferrer, A. (2022). Sequential multiblock partial least squares discriminant analysis for assessing prostate cancer aggressiveness with multiparametric magnetic resonance imaging. Chemometrics and Intelligent Laboratory Systems. 226:1-13. https://doi.org/10.1016/j.chemolab.2022.104588 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.chemolab.2022.104588 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 226 | es_ES |
dc.relation.pasarela | S\469561 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |