Mostrar el registro sencillo del ítem
dc.contributor.author | Malagón-Selma, María del Pilar | es_ES |
dc.contributor.author | Debón, A. | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2023-03-20T19:01:15Z | |
dc.date.available | 2023-03-20T19:01:15Z | |
dc.date.issued | 2022-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/192527 | |
dc.description.abstract | [EN] This research proposes multivariate techniques for discovering the game actions that contribute to the final ranking of football teams. This study uses data from the "Big Five" teams that competed in the Bundesliga First Division, Premier League, LaLiga, Ligue 1, and Serie A in the 2018-2019 season. The principal component analysis is used for outlier detection and for providing an overall preliminary insight. The statistically significant game actions of the top and bottom teams were studied using three supervised multivariate techniques, namely the partial least squares discriminant analysis, random forest and logistic regression. The partial least squares discriminant analysis model best identifies the variables with the most statistically significant contribution to a team's success or failure. The results were compared with those obtained using two-sample univariate tests (such as the Student's t-test or the Mann-Whitney test), demonstrating the advantages of multivariate approaches over univariate approaches. The results indicate that the top teams have both offensive and defensive power, and emphasise the high number of attacking actions; in contrast, the bottom teams have weak defences and few offensive actions. | es_ES |
dc.description.sponsorship | The authors want to express their gratitude to the Universitat Politecnica de Valencia for the financial support through the FPI-UPV grant (PAID-01-19). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Università del Salento | es_ES |
dc.relation.ispartof | Electronic Journal of Applied Statistical Analysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Multivariate methods | es_ES |
dc.subject | Two-sample tests | es_ES |
dc.subject | Partial least squares discriminant analysis (PLS-DA) | es_ES |
dc.subject | Random forest (RF) | es_ES |
dc.subject | Logistic regression (RL) | es_ES |
dc.subject | Game actions | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Exploring essential variables for successful and unsuccessful football teams in the "Big Five" with multivariate supervised techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1285/i20705948v15n1p249 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-19/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Malagón-Selma, MDP.; Debón, A.; Ferrer, A. (2022). Exploring essential variables for successful and unsuccessful football teams in the "Big Five" with multivariate supervised techniques. Electronic Journal of Applied Statistical Analysis. 15(1):249-276. https://doi.org/10.1285/i20705948v15n1p249 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1285/i20705948v15n1p249 | es_ES |
dc.description.upvformatpinicio | 249 | es_ES |
dc.description.upvformatpfin | 276 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2070-5948 | es_ES |
dc.relation.pasarela | S\466661 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |