- -

Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mosquera-Zamudio, Andrés es_ES
dc.contributor.author Launet, Laetitia es_ES
dc.contributor.author Tabatabaei, Zahra es_ES
dc.contributor.author Parra-Medina, Rafael es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Oliver Moll, Javier es_ES
dc.contributor.author Monteagudo, Carlos es_ES
dc.contributor.author Janssen, Emiel es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2023-03-21T19:00:10Z
dc.date.available 2023-03-21T19:00:10Z
dc.date.issued 2023-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192533
dc.description.abstract [EN] Simple Summary Deep learning (DL) is expanding into the surgical pathology field and shows promising outcomes in diminishing subjective interpretations, especially in dermatopathology. We aim to show the efforts of implementing DL models for melanocytic tumors in whole slide images. Four electronic databases were systematically searched, and 28 studies were identified. Our analysis revealed four research trends: DL models vs. pathologists, diagnostic prediction, prognosis, and regions of interest. We also highlight relevant issues that must be considered to implement these models in real scenarios taking into account pathologists' and engineers' perspectives. The rise of Artificial Intelligence (AI) has shown promising performance as a support tool in clinical pathology workflows. In addition to the well-known interobserver variability between dermatopathologists, melanomas present a significant challenge in their histological interpretation. This study aims to analyze all previously published studies on whole-slide images of melanocytic tumors that rely on deep learning techniques for automatic image analysis. Embase, Pubmed, Web of Science, and Virtual Health Library were used to search for relevant studies for the systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Articles from 2015 to July 2022 were included, with an emphasis placed on the used artificial intelligence methods. Twenty-eight studies that fulfilled the inclusion criteria were grouped into four groups based on their clinical objectives, including pathologists versus deep learning models (n = 10), diagnostic prediction (n = 7); prognosis (n = 5), and histological features (n = 6). These were then analyzed to draw conclusions on the general parameters and conditions of AI in pathology, as well as the necessary factors for better performance in real scenarios. es_ES
dc.description.sponsorship This work has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under the Marie Sklodowska Curie grant agreement No. 860627 (CLARIFY). The work is also supported by project INNEST/2021/321 (SAMUEL), PAID-10-21 - Subprograma 1 and PAID-PD-22 for postdoctoral research, and PI20/00094, Instituto de Salud Carlos III, y Fondos Europeos FEDER. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Cancers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Skin es_ES
dc.subject Cancer es_ES
dc.subject Melanoma es_ES
dc.subject Melanocytic tumors es_ES
dc.subject Dermatopathology es_ES
dc.subject Computational pathology es_ES
dc.subject Deep learning es_ES
dc.subject Classification es_ES
dc.subject Segmentation es_ES
dc.subject Computer-aided diagnosis es_ES
dc.subject.classification TEORÍA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/cancers15010042 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860627/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-21/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI20%2F00094/ES/ANALISIS COMBINADO POR INTELIGENCIA ARTIFICIAL DE MARCADORES EPIGENETICOS E IMAGENES MICROSCOPICAS DIGITALIZADAS DE TUMORES MELANOCITICOS AMBIGUOS PARA OPTIMIZAR SU CLASIFICACION DIAGNOSTICA Y PRONOSTICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-PD-22/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Mosquera-Zamudio, A.; Launet, L.; Tabatabaei, Z.; Parra-Medina, R.; Colomer, A.; Oliver Moll, J.; Monteagudo, C.... (2023). Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review. Cancers. 15(1):1-19. https://doi.org/10.3390/cancers15010042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/cancers15010042 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2072-6694 es_ES
dc.identifier.pmid 36612037 es_ES
dc.identifier.pmcid PMC9817526 es_ES
dc.relation.pasarela S\480589 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem