- -

Methodology for the Identification of Dust Accumulation Levels in Photovoltaic Panels Based in Heuristic-Statistical Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Methodology for the Identification of Dust Accumulation Levels in Photovoltaic Panels Based in Heuristic-Statistical Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Anaya, Eduardo es_ES
dc.contributor.author Elvira-Ortiz, David A. es_ES
dc.contributor.author Osornio-Rios, Roque A. es_ES
dc.contributor.author Antonino-Daviu, J. es_ES
dc.date.accessioned 2023-03-29T18:01:02Z
dc.date.available 2023-03-29T18:01:02Z
dc.date.issued 2022-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192649
dc.description.abstract [EN] The use of renewable energies is increasing around the world in order to deal with the environmental and economic problems related with conventional generation. In this sense, photovoltaic generation is one of the most promising technologies because of the high availability of sunlight, the easiness of maintenance, and the reduction in the costs of installation and production. However, photovoltaic panels are elements that must be located outside in order to receive the sun radiation and transform it into electricity. Therefore, they are exposed to the weather conditions and many environmental factors that can negatively affect the output delivered by the system. One of the most common issues related to the outside location is the dust accumulation in the surface of the panels. The dust particles obstruct the passage of the sunlight, reducing the efficiency of the generation process and making the system prone to experimental long-term faults. Thus, it is necessary to develop techniques that allow us to assess the level of dust accumulation in the panel surface in order to schedule a proper maintenance and avoid losses associated with the reduction of the delivered power and unexpected faults. In this work, we propose a methodology that uses a machine learning approach to estimate different levels of dust accumulation in photovoltaic panels. The developed method takes the voltage, current, temperature, and sun radiance as inputs to perform a statistical feature extraction that describes the behavior of the photovoltaic system under different dust conditions. In order to retain only the relevant information, a genetic algorithm works along with the principal component analysis technique to perform an optimal feature selection. Next, the linear discrimination analysis is carried out using the optimized dataset to reduce the problem dimensionality, and a multi-layer perceptron neural network is implemented as a classifier for discriminating among three different conditions: clean surface, slight dust accumulation, and severe dust accumulation. The proposed methodology is implemented using real signals from a photovoltaic installation, proving to be effective not only to determine if a dust accumulation condition is present but also when maintenance actions must be performed. Moreover, the results demonstrate that the accuracy of the proposed method is always above 94%. es_ES
dc.description.sponsorship This work was supported in part by the CONACYT scholarship under grant 1078505 and by FONDEC-UAQ 2020 FIN202011 project. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Condition monitoring es_ES
dc.subject Dust accumulation es_ES
dc.subject Genetic algorithms es_ES
dc.subject Photovoltaic generation es_ES
dc.subject Statistical analysis es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Methodology for the Identification of Dust Accumulation Levels in Photovoltaic Panels Based in Heuristic-Statistical Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics11213503 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//1078505/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//FIN202011/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Perez-Anaya, E.; Elvira-Ortiz, DA.; Osornio-Rios, RA.; Antonino-Daviu, J. (2022). Methodology for the Identification of Dust Accumulation Levels in Photovoltaic Panels Based in Heuristic-Statistical Techniques. Electronics. 11(21):1-19. https://doi.org/10.3390/electronics11213503 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics11213503 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\475449 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, Perú es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem