- -

Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression

Mostrar el registro completo del ítem

Movassaghi, CS.; Perrotta, KA.; Yang, H.; Iyer, R.; Cheng, X.; Dagher, M.; Alcañiz Fillol, M.... (2021). Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression. Analytical and Bioanalytical Chemistry. 413(27):6747-6767. https://doi.org/10.1007/s00216-021-03665-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/192674

Ficheros en el ítem

Metadatos del ítem

Título: Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression
Autor: Movassaghi, Cameron S. Perrotta, Katie A. Yang, Hongyan Iyer, Rahul Cheng, Xinyi Dagher, Merel Alcañiz Fillol, Miguel Andrews, Anne M.
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Many voltammetry methods have been developed to monitor brain extracellular dopamine levels. Fewer approaches have been successful in detecting serotonin in vivo. No voltammetric techniques are currently available to ...[+]
Palabras clave: Neurotransmitters , Electrochemistry , Brain , In vivo , Machine learning
Derechos de uso: Reconocimiento (by)
Fuente:
Analytical and Bioanalytical Chemistry. (issn: 1618-2642 )
DOI: 10.1007/s00216-021-03665-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00216-021-03665-1
Código del Proyecto:
info:eu-repo/grantAgreement/NSF//DGE-1650604/
info:eu-repo/grantAgreement/NSF//DGE-2034835/
info:eu-repo/grantAgreement/NIDA//DA045550/
info:eu-repo/grantAgreement/NIMH//MH106806/
Agradecimientos:
Funding from the National Institute on Drug Abuse (DA045550) and National Institute of Mental Health (MH106806) was received. CSM was supported by the National Science Foundation Graduate Research Fellowship Program ...[+]
Tipo: Artículo

References

Marcinkiewcz CA, Mazzone CM, D’Agostino G, Halladay LR, Hardaway JA, DiBerto JF, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537(7618):97–101. https://doi.org/10.1038/nature19318.

Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM. Brain dopamine and serotonin differ in regulation and its consequences. Proc Natl Acad Sci U S A. 2012;109(29):11510–5. https://doi.org/10.1073/pnas.1201547109.

Cheer JF, Heien MLAV, Garris PA, Carelli RM, Wightman RM. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci U S A. 2005;102(52):19150–5. https://doi.org/10.1073/pnas.0509607102. [+]
Marcinkiewcz CA, Mazzone CM, D’Agostino G, Halladay LR, Hardaway JA, DiBerto JF, et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537(7618):97–101. https://doi.org/10.1038/nature19318.

Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM. Brain dopamine and serotonin differ in regulation and its consequences. Proc Natl Acad Sci U S A. 2012;109(29):11510–5. https://doi.org/10.1073/pnas.1201547109.

Cheer JF, Heien MLAV, Garris PA, Carelli RM, Wightman RM. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci U S A. 2005;102(52):19150–5. https://doi.org/10.1073/pnas.0509607102.

Ngernsutivorakul T, Steyer DJ, Valenta AC, Kennedy RT. In vivo chemical monitoring at high spatiotemporal resolution using microfabricated sampling probes and droplet-based microfluidics coupled to mass spectrometry. Anal Chem. 2018;90(18):10943–50. https://doi.org/10.1021/acs.analchem.8b02468.

Tecuapetla F, Patel JC, Xenias H, English D, Tadros I, Shah F, et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J Neurosci. 2010;30(20):7105–10. https://doi.org/10.1523/jneurosci.0265-10.2010.

Amilhon B, Lepicard È, Renoir T, Mongeau R, Popa D, Poirel O, et al. VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci. 2010;30(6):2198–210. https://doi.org/10.1523/jneurosci.5196-09.2010.

Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, et al. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. eLife. 2017;6:e27566. https://doi.org/10.7554/eLife.27566.

Root DH, Barker DJ, Estrin DJ, Miranda-Barrientos JA, Liu B, Zhang S, et al. Distinct signaling by ventral tegmental area glutamate, GABA, and combinatorial glutamate-GABA neurons in motivated behavior. Cell Rep. 2020;32(9):108094. https://doi.org/10.1016/j.celrep.2020.108094.

Wang H-L, Zhang S, Qi J, Wang H, Cachope R, Mejias-Aponte CA, et al. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep. 2019;26(5):1128–42.e7. https://doi.org/10.1016/j.celrep.2019.01.014.

Lee K, Claar LD, Hachisuka A, Bakhurin KI, Nguyen J, Trott JM, et al. Temporally restricted dopaminergic control of reward-conditioned movements. Nat Neurosci. 2020;23(2):209–16. https://doi.org/10.1038/s41593-019-0567-0.

Dagher M, Perrotta KA, Erwin SA, Hachisuka A, Ayer R, Bakhurin KI, Claar LD, Masmanidis S, Yang H, Andrews AM. Optogenetic stimulation of dopamine neurons induces serotonin co-transmission. Submitted for publication.

Di Giovanni G, Esposito E, Di Matteo V. Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther. 2010;16(3):179–94. https://doi.org/10.1111/j.1755-5949.2010.00135.x.

Aman TK, Shen R-Y, Haj-Dahmane S. D2-like dopamine receptors depolarize dorsal raphe serotonin neurons through the activation of nonselective cationic conductance. J Pharmacol Exp Ther. 2007;320(1):376–85. https://doi.org/10.1124/jpet.106.111690.

Lee EHY, Geyer MA. Dopamine autoreceptor mediation of the effects of apomorphine on serotonin neurons. Pharmacol Biochem Behav. 1984;21(2):301–11. https://doi.org/10.1016/0091-3057(84)90230-2.

Niederkofler V, Asher TE, Dymecki SM. Functional interplay between dopaminergic and serotonergic neuronal systems during development and adulthood. ACS Chem Neurosci. 2015;6(7):1055–70. https://doi.org/10.1021/acschemneuro.5b00021.

Tan SKH, Hartung H, Schievink S, Sharp T, Temel Y. High-frequency stimulation of the substantia nigra induces serotonin-dependent depression-like behavior in animal models. Biol Psychiatry. 2013;73(2):e1–3. https://doi.org/10.1016/j.biopsych.2012.07.032.

Altieri S, Singh Y, Sibille E, Andrews AM. Serotonergic pathways in depression. Neurobiology of Depression. 20115633: CRC Press; 2011. p. 143–70. https://doi.org/10.1201/b11232.

Nestler EJ. Role of the brain’s reward circuitry in depression: transcriptional mechanisms. Int Rev Neurobiol. 2015;124:151–70. https://doi.org/10.1016/bs.irn.2015.07.003.

Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, et al. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry. 2011;69(10):928–35. https://doi.org/10.1016/j.biopsych.2011.01.012.

Sumiyoshi T, Kunugi H, Nakagome K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front Neurosci. 2014;8:395. https://doi.org/10.3389/fnins.2014.00395.

Rothman RB, Blough BE, Baumann MH. Dual dopamine/serotonin releasers as potential medications for stimulante and alcohol addictions. AAPS J. 2007;9(1):E1–E10. https://doi.org/10.1208/aapsj0901001.

Skowronek MH, Laucht M, Hohm E, Becker K, Schmidt MH. Interaction between the dopamine D4 receptor and the serotonin transporter promoter polymorphisms in alcohol and tobacco use among 15-year-olds. Neurogenetics. 2006;7(4):239–46. https://doi.org/10.1007/s10048-006-0050-4.

Eskow Jaunarajs KL, George JA, Bishop C. L-DOPA-induced dysregulation of extrastriatal dopamine and serotonin and affective symptoms in a bilateral rat model of Parkinson’s disease. Neuroscience. 2012;218:243–56. https://doi.org/10.1016/j.neuroscience.2012.05.052.

Stahl SM. Parkinson’s disease psychosis as a serotonin-dopamine imbalance syndrome. CNS Spectr. 2016;21(5):355–9. https://doi.org/10.1017/S1092852916000602.

Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circ. 2017;11:108. https://doi.org/10.3389/fncir.2017.00108.

Zangen A, Nakash R, Overstreet D, Yadid G. Association between depressive behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. Psychopharmacology. 2001;155(4):434–9. https://doi.org/10.1007/s002130100746.

Andrews AM. The BRAIN initiative: toward a chemical connectome. ACS Chem Neurosci. 2013;4(5):645. https://doi.org/10.1021/cn4001044.

Sarter M, Kim Y. Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories. ACS Chem Neurosci. 2015;6(1):8–10. https://doi.org/10.1021/cn500319m.

Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci. 2010;30(42):14273–83. https://doi.org/10.1523/jneurosci.1894-10.2010.

Hajós M, Allers KA, Jennings K, Sharp T, Charette G, Sík A, et al. Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci. 2007;25(1):119–26. https://doi.org/10.1111/j.1460-9568.2006.05276.x.

Hajós M, Gartside SE, Villa AEP, Sharp T. Evidence for a repetitive (burst) firing pattern in a sub-population of 5-hydroxytryptamine neurons in the dorsal and median raphe nuclei of the rat. Neuroscience. 1995;69(1):189–97. https://doi.org/10.1016/0306-4522(95)00227-A.

Hajós M, Sharp T. Burst-firing activity of presumed 5-HT neurones of the rat dorsal raphe nucleus: electrophysiological analysis by antidromic stimulation. Brain Res. 1996;740(1):162–8. https://doi.org/10.1016/S0006-8993(96)00869-4.

Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia. 2016;6(3):123–48. https://doi.org/10.1016/j.baga.2016.02.001.

Abdalla A, Atcherley CW, Pathirathna P, Samaranayake S, Qiang B, Peña E, et al. In vivo ambient serotonin measurements at carbon-fiber microelectrodes. Anal Chem. 2017;89(18):9703–11. https://doi.org/10.1021/acs.analchem.7b01257.

Atcherley CW, Wood KM, Parent KL, Hashemi P, Heien ML. The coaction of tonic and phasic dopamine dynamics. Chem Commun. 2015;51(12):2235–8. https://doi.org/10.1039/C4CC06165A.

Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, et al. Nanotools for neuroscience and brain activity mapping. ACS Nano. 2013;7(3):1850–66. https://doi.org/10.1021/nn4012847.

Watson CJ, Venton BJ, Kennedy RT. In vivo measurements of neurotransmitters by microdialysis sampling. Anal Chem. 2006;78(5):1391–9. https://doi.org/10.1021/ac0693722.

Bucher ES, Wightman RM. Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem. 2015;8(1):239–61. https://doi.org/10.1146/annurev-anchem-071114-040426.

Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst. 2020;145(19):6193–210. https://doi.org/10.1039/D0AN01175D.

Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM. Quantitation of in vivo measurements with carbon fiber microelectrodes. J Neurosci Methods. 2000;95(2):95–102. https://doi.org/10.1016/s0165-0270(99)00155-7.

Singh YS, Sawarynski LE, Dabiri PD, Choi WR, Andrews AM. Head-to-head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry. Anal Chem. 2011;83(17):6658–66. https://doi.org/10.1021/ac2011729.

Puthongkham P, Venton BJ. Recent advances in fast-scan cyclic voltammetry. Analyst. 2020;145(4):1087–102. https://doi.org/10.1039/c9an01925a.

Bunin MA, Prioleau C, Mailman RB, Wightman RM. Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J Neurochem. 1998;70(3):1077–87. https://doi.org/10.1046/j.1471-4159.1998.70031077.x.

Walters SH, Shu Z, Michael AC, Levitan ES. Regional variation in striatal dopamine spillover and release plasticity. ACS Chem Neurosci. 2020;11(6):888–99. https://doi.org/10.1021/acschemneuro.9b00577.

Nakatsuka N, Andrews AM. Differentiating siblings: the case of dopamine and norepinephrine. ACS Chem Neurosci. 2017;8(2):218–20. https://doi.org/10.1021/acschemneuro.7b00056.

Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A. 2005;102(29):10023–8. https://doi.org/10.1073/pnas.0504657102.

Venton BJ, Cao Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst. 2020;145(4):1158–68. https://doi.org/10.1039/C9AN01586H.

Dunham KE, Venton BJ. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst. 2020;145(22):7437–46. https://doi.org/10.1039/D0AN01406K.

Atcherley CW, Laude ND, Parent KL, Heien ML. Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir. 2013;29(48):14885–92. https://doi.org/10.1021/la402686s.

West A, Best J, Abdalla A, Nijhout HF, Reed M, Hashemi P. Voltammetric evidence for discrete serotonin circuits, linked to specific reuptake domains, in the mouse medial prefrontal cortex. Neurochem Int. 2019;123:50–8. https://doi.org/10.1016/j.neuint.2018.07.004.

Dengler AK, McCarty GS. Microfabricated microelectrode sensor for measuring background and slowly changing dopamine concentrations. J Electroanal Chem. 2013;693:28–33. https://doi.org/10.1016/j.jelechem.2013.01.022.

Kim SY, Oh YB, Shin HJ, Kim DH, Kim IY, Bennet K, et al. 5-hydroxytryptamine measurement using paired pulse voltammetry. Biomed Eng Lett. 2013;3(2):102–8. https://doi.org/10.1007/s13534-013-0093-z.

Meunier CJ, McCarty GS, Sombers LA. Drift subtraction for fast-scan cyclic voltammetry using double-waveformpartial-least-squares regression. Anal Chem. 2019;91(11):7319–27. https://doi.org/10.1021/acs.analchem.9b01083.

Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a multiple-scan-rate voltammetric waveform for real-time detection of met-enkephalin. ACS Chem Neurosci. 2019;10(4):2022–32. https://doi.org/10.1021/acschemneuro.8b00351.

Meunier CJ, Mitchell EC, Roberts JG, Toups JV, McCarty GS, Sombers LA. Electrochemical selectivity achieved using a double voltammetric waveform and partial least squares regression: differentiating endogenous hydrogen peroxide fluctuations from shifts in pH. Anal Chem. 2018;90(3):1767–76. https://doi.org/10.1021/acs.analchem.7b03717.

Oh Y, Heien ML, Park C, Kang YM, Kim J, Boschen SL, et al. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens Bioelectron. 2018;121:174–82. https://doi.org/10.1016/j.bios.2018.08.034.

Park C, Oh Y, Shin H, Kim J, Kang Y, Sim J, et al. Fast cyclic square-wave voltammetry to enhance neurotransmitter selectivity and sensitivity. Anal Chem. 2018;90(22):13348–55. https://doi.org/10.1021/acs.analchem.8b02920.

Shin H, Oh Y, Park C, Kang Y, Cho HU, Blaha CD, et al. Sensitive and selective measurement of serotonin in vivo using fast cyclic square-wave voltammetry. Anal Chem. 2020;92(1):774–81. https://doi.org/10.1021/acs.analchem.9b03164.

Swamy BEK, Venton BJ. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotoninin vivo. Analyst. 2007;132(9):876–84. https://doi.org/10.1039/B705552H.

Zhou F-M, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 2005;46(1):65–74. https://doi.org/10.1016/j.neuron.2005.02.010.

Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM. Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem. 2008;80(11):4040–8. https://doi.org/10.1021/ac800108j.

Heien MLAV, Johnson MA, Wightman RM. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal Chem. 2004;76(19):5697–704. https://doi.org/10.1021/ac0491509.

Keithley RB, Mark Wightman R, Heien ML. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal Chem. 2009;28(9):1127–36. https://doi.org/10.1016/j.trac.2009.07.002.

Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30. https://doi.org/10.1016/S0169-7439(01)00155-1.

Kim J, Oh Y, Park C, Kang YM, Shin H, Kim IY, et al. Comparison study of partial least squares regression analysis and principal component analysis in fast-scan cyclic voltammetry. Int J Electrochem Sci. 2019;14(7):5924–37. https://doi.org/10.20964/2019.07.03.

Kishida KT, Saez I, Lohrenz T, Witcher MR, Laxton AW, Tatter SB, et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc Natl Acad Sci U S A. 2016;113(1):200–5. https://doi.org/10.1073/pnas.1513619112.

Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Sáez I, Phillips PEM, et al. Sub-second dopamine detection in human striatum. PLoS One. 2011;6(8):e23291. https://doi.org/10.1371/journal.pone.0023291.

Bang D, Kishida KT, Lohrenz T, White JP, Laxton AW, Tatter SB, et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron. 2020;108(5):999–1010.e6. https://doi.org/10.1016/j.neuron.2020.09.015.

Moran RJ, Kishida KT, Lohrenz T, Saez I, Laxton AW, Witcher MR, et al. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology. 2018;43(6):1425–35. https://doi.org/10.1038/npp.2017.304.

Winquist F, Wide P, Lundström I. An electronic tongue based on voltammetry. Anal Chim Acta. 1997;357(1):21–31. https://doi.org/10.1016/S0003-2670(97)00498-4.

Campos I, Masot R, Alcañiz M, Gil L, Soto J, Vivancos JL, et al. Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors Actuators B Chem. 2010;149(1):71–8. https://doi.org/10.1016/j.snb.2010.06.028.

Labrador RH, Masot R, Alcañiz M, Baigts D, Soto J, Martínez-Mañez R, et al. Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chem. 2010;122(3):864–70. https://doi.org/10.1016/j.foodchem.2010.02.049.

Ivarsson P, Holmin S, Höjer N-E, Krantz-Rülcker C, Winquist F. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors Actuators B Chem. 2001;76(1):449–54. https://doi.org/10.1016/S0925-4005(01)00583-4.

Winquist F, Krantz-Rülcker C, Wide P, Lundström I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas Sci Technol. 1998;9(12):1937–46. https://doi.org/10.1088/0957-0233/9/12/002.

Ciosek P, Wróblewski W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst. 2007;132(10):963–78. https://doi.org/10.1039/B705107G.

Campos I, Alcañiz M, Masot R, Soto J, Martínez-Máñez R, Vivancos J-L, et al. A method of pulse array design for voltammetric electronic tongues. Sensors Actuators B Chem. 2012;161(1):556–63. https://doi.org/10.1016/j.snb.2011.10.075.

Fuentes E, Alcañiz M, Contat L, Baldeón EO, Barat JM, Grau R. Influence of potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to assess antioxidant capacity in aliso. Food Chem. 2017;224:233–41. https://doi.org/10.1016/j.foodchem.2016.12.076.

Tian S-Y, Deng S-P, Chen Z-X. Multifrequency large amplitude pulse voltammetry: a novel electrochemical method for electronic tongue. Sensors Actuators B Chem. 2007;123(2):1049–56. https://doi.org/10.1016/j.snb.2006.11.011.

Vreeland RF, Atcherley CW, Russell WS, Xie JY, Lu D, Laude ND, et al. Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal Chem. 2015;87(5):2600–7. https://doi.org/10.1021/ac502165f.

Sampson MM, Yang H, Andrews AM. Advanced microdialysis approaches resolve differences in serotonin homeostasis and signaling. Compendium of in vivo monitoring in real-time molecular neuroscience: WORLD SCIENTIFIC; 2017. p. 119–140https://doi.org/10.1142/9789813220546_0005.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Heien MLAV, Phillips PEM, Stuber GD, Seipel AT, Wightman RM. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst. 2003;128(12):1413–9. https://doi.org/10.1039/B307024G.

Jackson BP, Dietz SM, Wightman RM. Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem. 1995;67(6):1115–20. https://doi.org/10.1021/ac00102a015.

Kramer R. Chemometric techniques for quantitative analysis. Boca Raton: CRC Press; 1998. https://doi.org/10.1201/9780203909805.

Chong I-G, Jun C-H. Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst. 2005;78(1):103–12. https://doi.org/10.1016/j.chemolab.2004.12.011.

Ivarsson P, Johansson M, Höjer N-E, Krantz-Rülcker C, Winquist F, Lundström I. Supervision of rinses in a washing machine by a voltammetric electronic tongue. Sensors Actuators B Chem. 2005;108(1):851–7. https://doi.org/10.1016/j.snb.2004.12.088.

Winquist F. Voltammetric electronic tongues – basic principles and applications. Microchim Acta. 2008;163(1):3–10. https://doi.org/10.1007/s00604-007-0929-2.

Montague PR, Kishida KT. Computational underpinnings of neuromodulation in humans. Cold Spring Harb Symp Quant Biol. 2018;83:71–82. https://doi.org/10.1101/sqb.2018.83.038166.

Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2001. https://doi.org/10.1007/b94608.

Kawagoe KT, Zimmerman JB, Wightman RM. Principles of voltammetry and microelectrode surface states. J Neurosci Methods. 1993;48(3):225–40. https://doi.org/10.1016/0165-0270(93)90094-8.

Yang H, Sampson MM, Senturk D, Andrews AM. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis. ACS Chem Neurosci. 2015;6(8):1487–501. https://doi.org/10.1021/acschemneuro.5b00132.

Yang H, Thompson AB, McIntosh BJ, Altieri SC, Andrews AM. Physiologically relevant changes in serotonin resolved by fast microdialysis. ACS Chem Neurosci. 2013;4(5):790–8. https://doi.org/10.1021/cn400072f.

O’Neill B, Patel JC, Rice ME. Characterization of optically and electrically evoked dopamine release in striatal slices from digenic knock-in mice with DAT-driven expression of channelrhodopsin. ACS Chem Neurosci. 2017;8(2):310–9. https://doi.org/10.1021/acschemneuro.6b00300.

Martens HA, Dardenne P. Validation and verification of regression in small data sets. Chemom Intell Lab Syst. 1998;44(1):99–121. https://doi.org/10.1016/S0169-7439(98)00167-1.

Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification? Bioinformatics. 2004;20(3):374–80. https://doi.org/10.1093/bioinformatics/btg419.

Isaksson A, Wallman M, Göransson H, Gustafsson MG. Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recogn Lett. 2008;29(14):1960–5. https://doi.org/10.1016/j.patrec.2008.06.018.

Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. NeuroImage. 2018;180:68–77. https://doi.org/10.1016/j.neuroimage.2017.06.061.

Ng AY. Preventing “overfitting” of cross-validation data. International Conference on Machine Learning (ICML); 1997: Citeseer.

Zhang L, Doyon WM, Clark JJ, Phillips PE, Dani JA. Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. Mol Pharmacol. 2009;76(2):396–404. https://doi.org/10.1124/mol.109.056317.

Brimblecombe KR, Cragg SJ. The striosome and matrix compartments of the striatum: a path through the labyrinth from neurochemistry toward function. ACS Chem Neurosci. 2017;8(2):235–42. https://doi.org/10.1021/acschemneuro.6b00333.

Hill DF, Parent KL, Atcherley CW, Cowen SL, Heien ML. Differential release of dopamine in the nucleus accumbens evoked by low-versus high-frequency medial prefrontal cortex stimulation. Brain Stimul. 2018;11(2):426–34. https://doi.org/10.1016/j.brs.2017.11.010.

Wightman RM, Amatorh C, Engstrom RC, Hale PD, Kristensen EW, Kuhr WG, et al. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience. 1988;25(2):513–23. https://doi.org/10.1016/0306-4522(88)90255-2.

Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods. 2004;140(1–2):169–81. https://doi.org/10.1016/j.jneumeth.2004.05.017.

Daws LC, Toney GM, Davis DJ, Gerhardt GA, Frazer A. In vivo chronoamperometric measurements of the clearance of exogenously applied serotonin in the rat dentate gyrus. J Neurosci Methods. 1997;78(1):139–50. https://doi.org/10.1016/S0165-0270(97)00144-1.

Wood KM, Hashemi P. Fast-scan cyclic voltammetry analysis of dynamic serotonin reponses to acute escitalopram. ACS Chem Neurosci. 2013;4(5):715–20. https://doi.org/10.1021/cn4000378.

Dawson LA, Watson JM. Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther. 2009;15(2):107–17. https://doi.org/10.1111/j.1755-5949.2008.00067.x.

Gartside SE, Umbers V, Hajós M, Sharp T. Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br J Pharmacol. 1995;115(6):1064–70. https://doi.org/10.1111/j.1476-5381.1995.tb15919.x.

Owens MJ, Knight DL, Nemeroff CB. Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry. 2001;50(5):345–50. https://doi.org/10.1016/s0006-3223(01)01145-3.

Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry. 2020;25(1):82–93. https://doi.org/10.1038/s41380-019-0406-4.

Watabe-Uchida M, Zhu L, Ogawa Sachie K, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74(5):858–73. https://doi.org/10.1016/j.neuron.2012.03.017.

Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther. 2007;113(2):296–320. https://doi.org/10.1016/j.pharmthera.2006.08.004.

Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology. 2011;213(2):213–42. https://doi.org/10.1007/s00213-010-2029-y.

Smith GS, Ma Y, Dhawan V, Chaly T, Eidelberg D. Selective serotonin reuptake inhibitor (SSRI) modulation of striatal dopamine measured with [11C]-raclopride and positron emission tomography. Synapse. 2009;63(1):1–6. https://doi.org/10.1002/syn.20574.

Warwick JM, Carey PD, Cassimjee N, Lochner C, Hemmings S, Moolman-Smook H, et al. Dopamine transporter binding in social anxiety disorder: the effect of treatment with escitalopram. Metab Brain Dis. 2012;27(2):151–8. https://doi.org/10.1007/s11011-012-9280-3.

de Win MML, Habraken JBA, Reneman L, van den Brink W, den Heeten GJ, Booij J. Validation of [123I]β-CIT SPECT to assess serotonin transporters in vivo in humans: a double-blind, placebo-controlled, crossover study with the selective serotonin reuptake inhibitor citalopram. Neuropsychopharmacology. 2005;30(5):996–1005. https://doi.org/10.1038/sj.npp.1300683.

Altieri SC, Yang H, O'Brien HJ, Redwine HM, Senturk D, Hensler JG, et al. Perinatal vs genetic programming of serotonin states associated with anxiety. Neuropsychopharmacology. 2015;40(6):1456–70. https://doi.org/10.1038/npp.2014.331.

Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem. 2009;81(22):9462–71. https://doi.org/10.1021/ac9018846.

Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8(2):221–34. https://doi.org/10.1021/acschemneuro.6b00393.

Loewinger G, Patil P, Kishida KT, Parmigiani G. Multi-study learning for real-time neurochemical sensing in humans using the “study strap ensemble”. bioRxiv. 2021:856385. https://doi.org/10.1101/856385.

Johnson JA, Hobbs CN, Wightman RM. Removal of differential capacitive interferences in fast-scan cyclic voltammetry. Anal Chem. 2017;89(11):6166–74. https://doi.org/10.1021/acs.analchem.7b01005.

Gardier AM, David DJ, Jego G, Przybylski C, Jacquot C, Durier S, et al. Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem. 2003;86(1):13–24. https://doi.org/10.1046/j.1471-4159.2003.01827.x.

Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. https://doi.org/10.1186/1478-811X-11-34.

Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31(3):187–99. https://doi.org/10.1111/j.1365-2885.2008.00944.x.

Qi Z, Miller GW, Voit EO. Mathematical models of dopamine metabolism in Parkinson’s disease. In: Wellstead P, Cloutier M, editors. Systems biology of Parkinson's disease. New York: Springer New York; 2012. p. 151–71. https://doi.org/10.1007/978-1-4614-3411-5_8.

Takmakov P, Zachek MK, Keithley RB, Bucher ES, McCarty GS, Wightman RM. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes. Anal Chem. 2010;82(23):9892–900. https://doi.org/10.1021/ac102399n.

Yoshimi K, Weitemier A. Temporal differentiation of pH-dependent capacitive current from dopamine. Anal Chem. 2014;86(17):8576–84. https://doi.org/10.1021/ac500706m.

Gerhardt GA, Hoffman AF. Effects of recording media composition on the responses of Nafion-coated carbon fiber microelectrodes measured using high-speed chronoamperometry. J Neurosci Methods. 2001;109(1):13–21. https://doi.org/10.1016/S0165-0270(01)00396-X.

Fu G-H, Xu Q-S, Li H-D, Cao D-S, Liang Y-Z. Elastic net grouping variable selection combined with partial least squares regression (EN-PLSR) for the analysis of strongly multi-collinear spectroscopic data. Appl Spectrosc. 2011;65(4):402–8. https://doi.org/10.1366/10-06069.

Giglio C, Brown SD. Using elastic net regression to perform spectrally relevant variable selection. J Chemom. 2018;32(8):e3034. https://doi.org/10.1002/cem.3034.

Vasudevan RK, Ziatdinov M, Vlcek L, Kalinin SV. Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality. npj Comput Mater. 2021;7(1):16. https://doi.org/10.1038/s41524-020-00487-0.

Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, et al. Machine learning and the physical sciences. Rev Mod Phys. 2019;91(4):045002. https://doi.org/10.1103/RevModPhys.91.045002.

Gundry L, Guo S-X, Kennedy G, Keith J, Robinson M, Gavaghan D, et al. Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. Chem Commun. 2021;57(15):1855–70. https://doi.org/10.1039/D0CC07549C.

Bond AM. A perceived paucity of quantitative studies in the modern era of voltammetry: prospects for parameterisation of complex reactions in Bayesian and machine learning frameworks. J Solid State Electrochem. 2020;24(9):2041–50. https://doi.org/10.1007/s10008-020-04639-6.

Matsushita GHG, Sugi AH, Costa YMG, Gomez-A A, Da Cunha C, Oliveira LS. Phasic dopamine release identification using convolutional neural network. Comput Biol Med. 2019;114:103466. https://doi.org/10.1016/j.compbiomed.2019.103466.

Ye J-J, Lin C-H, Huang X-J. Analyzing the anodic stripping square wave voltammetry of heavy metal ions via machine learning: information beyond a single voltammetric peak. J Electroanal Chem. 2020;872:113934. https://doi.org/10.1016/j.jelechem.2020.113934.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem