- -

A Saliency-Based Sparse Representation Method for Point Cloud Simplification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Saliency-Based Sparse Representation Method for Point Cloud Simplification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leal, Esmeide es_ES
dc.contributor.author Sanchez-Torres, German es_ES
dc.contributor.author Branch-Bedoya, John W. es_ES
dc.contributor.author Abad Cerdá, Francisco José es_ES
dc.contributor.author Leal, Nallig es_ES
dc.date.accessioned 2023-04-06T18:01:06Z
dc.date.available 2023-04-06T18:01:06Z
dc.date.issued 2021-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192748
dc.description.abstract [EN] High-resolution 3D scanning devices produce high-density point clouds, which require a large capacity of storage and time-consuming processing algorithms. In order to reduce both needs, it is common to apply surface simplification algorithms as a preprocessing stage. The goal of point cloud simplification algorithms is to reduce the volume of data while preserving the most relevant features of the original point cloud. In this paper, we present a new point cloud feature-preserving simplification algorithm. We use a global approach to detect saliencies on a given point cloud. Our method estimates a feature vector for each point in the cloud. The components of the feature vector are the normal vector coordinates, the point coordinates, and the surface curvature at each point. Feature vectors are used as basis signals to carry out a dictionary learning process, producing a trained dictionary. We perform the corresponding sparse coding process to produce a sparse matrix. To detect the saliencies, the proposed method uses two measures, the first of which takes into account the quantity of nonzero elements in each column vector of the sparse matrix and the second the reconstruction error of each signal. These measures are then combined to produce the final saliency value for each point in the cloud. Next, we proceed with the simplification of the point cloud, guided by the detected saliency and using the saliency values of each point as a dynamic clusterization radius. We validate the proposed method by comparing it with a set of state-of-the-art methods, demonstrating the effectiveness of the simplification method. es_ES
dc.description.sponsorship This research was supported by the Administrative Department of Science and Technology of Colombia (COLCIENCIAS) under the doctoral scholarship program COLCIENCIAS 2015-727 and by The Universidad Nacional de Colombia campus Medellin. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Point cloud simplification es_ES
dc.subject Sparse representation es_ES
dc.subject Saliency features es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Saliency-Based Sparse Representation Method for Point Cloud Simplification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21134279 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//2015-727/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Leal, E.; Sanchez-Torres, G.; Branch-Bedoya, JW.; Abad Cerdá, FJ.; Leal, N. (2021). A Saliency-Based Sparse Representation Method for Point Cloud Simplification. Sensors. 21(13):1-19. https://doi.org/10.3390/s21134279 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21134279 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 34201455 es_ES
dc.identifier.pmcid PMC8271750 es_ES
dc.relation.pasarela S\443087 es_ES
dc.contributor.funder Universidad Nacional de Colombia es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem