- -

An Optimization Model with Network Edges for Multimedia Sensors Using Artificial Intelligence of Things

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Optimization Model with Network Edges for Multimedia Sensors Using Artificial Intelligence of Things

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rehman, Amjad es_ES
dc.contributor.author Haseeb, Khalid es_ES
dc.contributor.author Saba, Tanzila es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.date.accessioned 2023-04-18T18:00:38Z
dc.date.available 2023-04-18T18:00:38Z
dc.date.issued 2021-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192817
dc.description.abstract [EN] In modern years, network edges have been explored by many applications to lower communication and management costs. They are also integrated with the internet of things (IoT) to achieve network design, in terms of scalability and heterogeneous services for multimedia applications. Many proposed solutions are performing a vital role in the development of robust protocols and reducing the response time for critical networks. However, most of them are not able to support the forwarding processes of high multimedia traffic under dynamic characteristics with constraint bandwidth. Moreover, they increase the rate of data loss in an uncertain environment and compromise network performance by increasing delivery delay. Therefore, this paper presents an optimization model with mobile edges for multimedia sensors using artificial intelligence of things, which aims to maintain the process of real-time data collection with low consumption of resources. Moreover, it improves the unpredictability of network communication with the integration of software-defined networks (SDN) and mobile edges. Firstly, it utilizes the artificial intelligence of things (AIoT), forming the multi-hop network and guaranteed the primary services for constraints network with stable resources management. Secondly, the SDN performs direct association with mobile edges to support the load balancing for multimedia sensors and centralized the management. Finally, multimedia traffic is heading towards applications in an unchanged form and without negotiating using the sharing of subkeys. The experimental results demonstrated its effectiveness for delivery rate by an average of 35%, processing delay by an average of 29%, network overheads by an average of 41%, packet drop ratio by an average of 39%, and packet retransmission by an average of 34% against existing solutions. es_ES
dc.description.sponsorship This research was technically supported by the Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia. The authors are thankful for the technical support. There is no funding for this research work. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multimedia sensors es_ES
dc.subject Optimizing resources es_ES
dc.subject Software-defined networks es_ES
dc.subject Delay controlled es_ES
dc.subject Artificial intelligence of things es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title An Optimization Model with Network Edges for Multimedia Sensors Using Artificial Intelligence of Things es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s21217103 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Rehman, A.; Haseeb, K.; Saba, T.; Lloret, J.; Sendra, S. (2021). An Optimization Model with Network Edges for Multimedia Sensors Using Artificial Intelligence of Things. Sensors. 21(21):1-13. https://doi.org/10.3390/s21217103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s21217103 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 21 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 34770416 es_ES
dc.identifier.pmcid PMC8587205 es_ES
dc.relation.pasarela S\456671 es_ES
dc.contributor.funder Artificial Intelligence and Data Analytics Lab, Prince Sultan University es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem