- -

Dominant Color Extraction with K-Means for Camera Characterization in Cultural Heritage Documentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dominant Color Extraction with K-Means for Camera Characterization in Cultural Heritage Documentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molada-Tebar, Adolfo es_ES
dc.contributor.author Marqués-Mateu, Ángel es_ES
dc.contributor.author Lerma, José Luis es_ES
dc.contributor.author Westland, Stephen es_ES
dc.date.accessioned 2023-04-26T18:01:09Z
dc.date.available 2023-04-26T18:01:09Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/192975
dc.description.abstract [EN] The camera characterization procedure has been recognized as a convenient methodology to correct color recordings in cultural heritage documentation and preservation tasks. Instead of using a whole color checker as a training sample set, in this paper, we introduce a novel framework named the Patch Adaptive Selection with K-Means (P-ASK) to extract a subset of dominant colors from a digital image and automatically identify their corresponding chips in the color chart used as characterizing colorimetric reference. We tested the methodology on a set of rock art painting images captured with a number of digital cameras. The characterization approach based on the P-ASK framework allows the reduction of the training sample size and a better color adjustment to the chromatic range of the input scene. In addition, the computing time required for model training is less than in the regular approach with all color chips, and obtained average color differences Delta E-ab(*) lower than two CIELAB units. Furthermore, the graphic and numeric results obtained for the characterized images are encouraging and confirms that the P-ASK framework based on the K-means algorithm is suitable for automatic patch selection for camera characterization purposes. es_ES
dc.description.sponsorship This research is partly funded by the Research and Development Aid Program PAID-01-16 of the Universitat Politecnica de Valencia, through FPI-UPV-2016 Sub 1 grant. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Archaeology es_ES
dc.subject Clustering es_ES
dc.subject Colorimetry es_ES
dc.subject Data mining es_ES
dc.subject Machine learning es_ES
dc.subject Rock art documentation es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Dominant Color Extraction with K-Means for Camera Characterization in Cultural Heritage Documentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs12030520 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-16/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation Molada-Tebar, A.; Marqués-Mateu, Á.; Lerma, JL.; Westland, S. (2020). Dominant Color Extraction with K-Means for Camera Characterization in Cultural Heritage Documentation. Remote Sensing. 12(3):1-22. https://doi.org/10.3390/rs12030520 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs12030520 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\402299 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem