Albrecht J, Alves AA, Amadio G et al (2019) A roadmap for HEP software and computing R &D for the 2020s. Comput Softw Big Sci 3(1):7. https://doi.org/10.1007/s41781-018-0018-8
Alvarruiz F, de Alfonso C, Caballer M, et al (2012) An energy manager for high performance computer clusters. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, p 231–238. https://doi.org/10.1109/ISPA.2012.38
Amazon Web Services (2022a) Lambda. https://aws.amazon.com/releasenotes/release-aws-lambda-on-2014-11-13. Accessed 4 Dec 2022
[+]
Albrecht J, Alves AA, Amadio G et al (2019) A roadmap for HEP software and computing R &D for the 2020s. Comput Softw Big Sci 3(1):7. https://doi.org/10.1007/s41781-018-0018-8
Alvarruiz F, de Alfonso C, Caballer M, et al (2012) An energy manager for high performance computer clusters. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, p 231–238. https://doi.org/10.1109/ISPA.2012.38
Amazon Web Services (2022a) Lambda. https://aws.amazon.com/releasenotes/release-aws-lambda-on-2014-11-13. Accessed 4 Dec 2022
Amazon Web Services (2022b) Organizing objects in the Amazon S3 console using folders. https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html. Accessed 4 Dec 2022
Amazon Web Services (2022c) S3: Simple Storage Service. https://aws.amazon.com/s3. Accessed 4 Dec 2022
Apache Software Foundation (2022) OpenWhisk. https://openwhisk.apache.org/. Accessed 4 Dec 2022
Apollinari G, Béjar Alonso I, Brüning O et al (2017) High-luminosity large hadron collider (HL-LHC): technical design report V.0.1. Tech Rep CERN. https://doi.org/10.23731/CYRM-2017-004
Beswick J (2022) Using Amazon EFS for AWS Lambda in your serverless applications. https://aws.amazon.com/blogs/compute/using-amazon-efs-for-aws-lambda-in-your-serverless-applications/. Accessed 4 Dec 2022
Bila N, Dettori P, Kanso A, et al (2017) Leveraging the serverless architecture for securing linux containers. In: 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), p 401–404. https://doi.org/10.1109/ICDCSW.2017.66
Bird I, Buncic P, Carminati F, et al (2014) Update of the computing models of the WLCG and the LHC experiments. Tech Rep CERN. https://cds.cern.ch/record/1695401
Blomer J, Buncic P, Fuhrmann T (2011) CernVM-FS: delivering scientific software to globally distributed computing resources. In: Proceedings of the First International Workshop on Network-aware Data Management. Association for Computing Machinery, New York, p 49-56. https://doi.org/10.1145/2110217.2110225
Blomer J, Ganis G, Mosciatti S et al (2019) Towards a serverless CernVM-FS. EPJ Web Conf 214(09):007. https://doi.org/10.1051/epjconf/201921409007
Brun R, Rademakers F (1997) ROOT-an object oriented data analysis framework. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment. New Comput Tech Phys Res V 389(1):81–86. https://doi.org/10.1016/S0168-9002(97)00048-X
Caballer M, de Alfonso C, Alvarruiz F et al (2013) EC3: elastic cloud computing cluster. J Comput Syst Sci 79(8):1341–1351. https://doi.org/10.1016/j.jcss.2013.06.005
Caballer M, Blanquer I, Moltó G et al (2015) Dynamic management of virtual infrastructures. J Grid Comput 13(1):53–70. https://doi.org/10.1007/s10723-014-9296-5
Carver B, Zhang J, Wang A, et al (2020) Wukong: a scalable and locality-enhanced framework for serverless parallel computing. In: Proceedings of the 11th ACM Symposium on Cloud Computing. Association for Computing Machinery, New York, p 1–15. https://doi.org/10.1145/3419111.3421286
Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: OSDI’04: Sixth Symposium on Operating System Design and Implementation. San Francisco, CA, p 137–150
Dorigo A, Elmer P, Furano F et al (2005) XROOTD—a highly scalable architecture for data access. WSEAS Trans Comput 4:348–353
Giménez-Alventosa V, Moltó G, Caballer M (2019) A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Gener Comput Syst 97:259–274. https://doi.org/10.1016/j.future.2019.02.057
Google (2022) Cloud Functions. https://cloud.google.com/functions. Accessed 4 Dec 2022
Grzesik P, Augustyn DR, Wyciślik L et al (2021) Serverless computing in omics data analysis and integration. Brief Bioinform. https://doi.org/10.1093/bib/bbab349
Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2
HEPix (2017) Hepix benchmarking working group. https://w3.hepix.org/benchmarking.html. Accessed 4 Dec 2022
Jonas E, Pu Q, Venkataraman S, et al (2017) Occupy the cloud: distributed computing for the 99%. In: Proceedings of the 2017 Symposium on Cloud Computing. Association for Computing Machinery, New York, p 445-451. https://doi.org/10.1145/3127479.3128601
Kuśnierz J, Padulano VE, Malawski M, et al (2022) A serverless engine for high energy physics distributed analysis. In: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid), p 575–584. https://doi.org/10.1109/CCGrid54584.2022.00067
Lavrijsen WTLP, Dutta A (2016) High-performance python-C++ bindings with PyPy and Cling. In: PyHPC ’16. IEEE Press, p 27-35. http://wlav.web.cern.ch/wlav/Cppyy_LavrijsenDutta_PyHPC16.pdf
Le DN, Pal S, Pattnaik PK (2022) OpenFaaS. John Wiley & Sons, p 287–303. https://doi.org/10.1002/9781119682318.ch17
Li Z, Guo L, Chen Q, et al (2022) Help rather than recycle: alleviating cold startup in serverless computing through inter-function container sharing. In: 2022 USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, p 69–84. https://www.usenix.org/conference/atc22/presentation/li-zijun-help
McKinney W (2010) Data structures for statistical computing in python. In: Stéfan van der Walt, Jarrod Millman (eds) Proceedings of the 9th Python in Science Conference, p 56–61. https://doi.org/10.25080/Majora-92bf1922-00a
Merkel D (2014) Docker: lightweight linux containers for consistent development and deployment. Linux J 2014(239):2
MinIO (2022) White paper: high performance multi-cloud object storage. Tech Rep MinIO Inc., Palo Alto, CA. https://min.io/resources/docs/MinIO-High-Performance-Multi-Cloud-Object-Storage.pdf
Müller I, Marroquín R, Alonso G (2020) Lambada: interactive data analytics on cold data using serverless cloud infrastructure. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. Association for Computing Machinery, New York, p 115–130. https://doi.org/10.1145/3318464.3389758
Nguyen HD, Yang Z, Chien AA (2021) Motivating high performance serverless workloads. In: Proceedings of the 1st Workshop on High Performance Serverless Computing. Association for Computing Machinery, New York, p 25–32. https://doi.org/10.1145/3452413.3464786
Oakes E, Yang L, Zhou D, et al (2018) SOCK: rapid task provisioning with serverless-optimized containers. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, p 57–70. https://www.usenix.org/conference/atc18/presentation/oakes
ONEDATA (2022) https://onedata.org. Accessed 4 Dec 2022
Padulano VE, Villanueva JC, Guiraud E et al (2020) Distributed data analysis with ROOT RDataFrame. EPJ Web Conf 245(03):009. https://doi.org/10.1051/epjconf/202024503009
Pheatt C (2008) Intel®threading building blocks. J Comput Sci Coll 23(4):298
Piparo D, Canal P, Guiraud E et al (2019) RDataFrame: easy parallel ROOT analysis at 100 threads. EPJ Web Conf 214(06):029. https://doi.org/10.1051/epjconf/201921406029
Pérez A, Moltó G, Caballer M et al (2018) Serverless computing for container-based architectures. Future Gener Comput Syst 83:50–59. https://doi.org/10.1016/j.future.2018.01.022
Pérez A, Risco S, Naranjo DM, et al (2019) On-premises serverless computing for event-driven data processing applications. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). https://doi.org/10.1109/CLOUD.2019.00073
Rocklin M (2015) Dask: parallel computation with blocked algorithms and task scheduling. In: Huff K, Bergstra J (eds) Proceedings of the 14th Python in Science Conference. SciPy, online, p 130–136
Serguei C et al (2008) The CMS experiment at the CERN LHC. JINST 3(S08):004. https://doi.org/10.1088/1748-0221/3/08/S08004
Sexton-Kennedy E (2018) HEP software éevelopment in the next decade; the views of the HSF community. J Phys Conf Series 1085(022):006. https://doi.org/10.1088/1742-6596/1085/2/022006
Shankar V, Krauth K, Vodrahalli K, et al (2020) Serverless linear algebra. In: Proceedings of the 11th ACM Symposium on Cloud Computing. Association for Computing Machinery, New York, p 281–295. https://doi.org/10.1145/3419111.3421287
The Knative Authors (2022) Knative. https://knative.dev. Accessed 4 Dec 2022
The Kubernetes Authors (2022) Kubernetes. https://kubernetes.io/. Accessed 4 Dec 2022
Vassilev V, Canal P, Naumann A et al (2012) Cling–the new interactive interpreter for ROOT 6. J Phys Conf Series. https://doi.org/10.1088/1742-6596/396/5/052071
WLCG (2022) Homepage. http://wlcg.web.cern.ch/. Accessed 4 Dec 2022
Wunsch S (2019) Analysis of the di-muon spectrum using data from the CMS detector taken in 2012. https://doi.org/10.7483/OPENDATA.CMS.AAR1.4NZQ
Zaharia M, Chowdhury M, Franklin MJ, et al (2010) Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. USENIX Association, Boston, p 10. https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
[-]