- -

Automatic Classification of Rotor Faults in Soft-Started Induction Motors, Based on Persistence Spectrum and Convolutional Neural Network Applied to Stray-Flux Signals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Classification of Rotor Faults in Soft-Started Induction Motors, Based on Persistence Spectrum and Convolutional Neural Network Applied to Stray-Flux Signals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vicente Biot-Monterde es_ES
dc.contributor.author Angela Navarro-Navarro es_ES
dc.contributor.author Israel Zamudio-Ramirez es_ES
dc.contributor.author Jose A. Antonino-Daviu es_ES
dc.contributor.author Roque A. Osornio-Rios es_ES
dc.date.accessioned 2023-05-04T18:02:04Z
dc.date.available 2023-05-04T18:02:04Z
dc.date.issued 2023-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193138
dc.description.abstract [EN] Due to their robustness, versatility and performance, induction motors (IMs) have been widely used in many industrial applications. Despite their characteristics, these machines are not immune to failures. In this sense, breakage of the rotor bars (BRB) is a common fault, which is mainly related to the high currents flowing along those bars during start-up. In order to reduce the stresses that could lead to the appearance of these faults, the use of soft starters is becoming usual. However, these devices introduce additional components in the current and flux signals, affecting the evolution of the fault-related patterns and so making the fault diagnosis process more difficult. This paper proposes a new method to automatically classify the rotor health state in IMs driven by soft starters. The proposed method relies on obtaining the Persistence Spectrum (PS) of the start-up stray-flux signals. To obtain a proper dataset, Data Augmentation Techniques (DAT) are applied, adding Gaussian noise to the original signals. Then, these PS images are used to train a Convolutional Neural Network (CNN), in order to automatically classify the rotor health state, depending on the severity of the fault, namely: healthy motor, one broken bar and two broken bars. This method has been validated by means of a test bench consisting of a 1.1 kW IM driven by four different soft starters coupled to a DC motor. The results confirm the reliability of the proposed method, obtaining a classification rate of 100.00% when analyzing each model separately and 99.89% when all the models are analyzed at a time. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and FEDER program in the framework of the `Proyectos de Generación de Conocimiento 2021 of the Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia, belonging to the Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023 (ref: PID2021-122343OB-I00). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Induction motor es_ES
dc.subject CNN es_ES
dc.subject Stray-flux es_ES
dc.subject Automatic fault diagnosis es_ES
dc.subject Soft starters es_ES
dc.subject Broken rotor bars es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Automatic Classification of Rotor Faults in Soft-Started Induction Motors, Based on Persistence Spectrum and Convolutional Neural Network Applied to Stray-Flux Signals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23010316 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-122343OB-I00//SENSORES INTELIGENTES BASADOS EN EL ANÁLISIS AVANZADO DE CORRIENTES Y FLUJO DE DISPERSIÓN PARA LA MONITORIZACIÓN FIABLE DE LA CONDICIÓN DE MOTORES ELÉCTRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Vicente Biot-Monterde; Angela Navarro-Navarro; Israel Zamudio-Ramirez; Jose A. Antonino-Daviu; Roque A. Osornio-Rios (2023). Automatic Classification of Rotor Faults in Soft-Started Induction Motors, Based on Persistence Spectrum and Convolutional Neural Network Applied to Stray-Flux Signals. Sensors. 23(1):1-29. https://doi.org/10.3390/s23010316 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23010316 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 29 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 36616914 es_ES
dc.identifier.pmcid PMC9823340 es_ES
dc.relation.pasarela S\479931 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem