Mostrar el registro sencillo del ítem
dc.contributor.author | Bahache, Mohamed | es_ES |
dc.contributor.author | Tahari, Abdou El Karim | es_ES |
dc.contributor.author | Herrera-Tapia, Jorge | es_ES |
dc.contributor.author | Lagraa, Nasreddine | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Kerrache, Chaker Abdelaziz | es_ES |
dc.date.accessioned | 2023-05-05T18:01:16Z | |
dc.date.available | 2023-05-05T18:01:16Z | |
dc.date.issued | 2022-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193164 | |
dc.description.abstract | [EN] Remotely monitoring people's healthcare is still among the most important research topics for researchers from both industry and academia. In addition, with the Wireless Body Networks (WBANs) emergence, it becomes possible to supervise patients through an implanted set of body sensors that can communicate through wireless interfaces. These body sensors are characterized by their tiny sizes, and limited resources (power, computing, and communication capabilities), which makes these devices prone to have faults and sensible to be damaged. Thus, it is necessary to establish an efficient system to detect any fault or anomalies when receiving sensed data. In this paper, we propose a novel, optimized, and hybrid solution between machine learning and statistical techniques, for detecting faults in WBANs that do not affect the devices' resources and functionality. Experimental results illustrate that our approach can detect unwanted measurement faults with a high detection accuracy ratio that exceeds the 99.62%, and a low mean absolute error of 0.61%, clearly outperforming the existing state-of-art solutions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Body sensor | es_ES |
dc.subject | Cloud computing | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Fault detection | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | WBANs | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s22155893 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Bahache, M.; Tahari, AEK.; Herrera-Tapia, J.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Kerrache, CA. (2022). Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques. Sensors. 22(15):1-14. https://doi.org/10.3390/s22155893 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s22155893 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 35957453 | es_ES |
dc.identifier.pmcid | PMC9371421 | es_ES |
dc.relation.pasarela | S\470156 | es_ES |