- -

Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bahache, Mohamed es_ES
dc.contributor.author Tahari, Abdou El Karim es_ES
dc.contributor.author Herrera-Tapia, Jorge es_ES
dc.contributor.author Lagraa, Nasreddine es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Kerrache, Chaker Abdelaziz es_ES
dc.date.accessioned 2023-05-05T18:01:16Z
dc.date.available 2023-05-05T18:01:16Z
dc.date.issued 2022-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193164
dc.description.abstract [EN] Remotely monitoring people's healthcare is still among the most important research topics for researchers from both industry and academia. In addition, with the Wireless Body Networks (WBANs) emergence, it becomes possible to supervise patients through an implanted set of body sensors that can communicate through wireless interfaces. These body sensors are characterized by their tiny sizes, and limited resources (power, computing, and communication capabilities), which makes these devices prone to have faults and sensible to be damaged. Thus, it is necessary to establish an efficient system to detect any fault or anomalies when receiving sensed data. In this paper, we propose a novel, optimized, and hybrid solution between machine learning and statistical techniques, for detecting faults in WBANs that do not affect the devices' resources and functionality. Experimental results illustrate that our approach can detect unwanted measurement faults with a high detection accuracy ratio that exceeds the 99.62%, and a low mean absolute error of 0.61%, clearly outperforming the existing state-of-art solutions. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Body sensor es_ES
dc.subject Cloud computing es_ES
dc.subject Clustering es_ES
dc.subject Fault detection es_ES
dc.subject Machine learning es_ES
dc.subject WBANs es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s22155893 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Bahache, M.; Tahari, AEK.; Herrera-Tapia, J.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Kerrache, CA. (2022). Towards an Accurate Faults Detection Approach in Internet of Medical Things Using Advanced Machine Learning Techniques. Sensors. 22(15):1-14. https://doi.org/10.3390/s22155893 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s22155893 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 35957453 es_ES
dc.identifier.pmcid PMC9371421 es_ES
dc.relation.pasarela S\470156 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem