- -

Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flores, Vaneza es_ES
dc.contributor.author Heras, Stella es_ES
dc.contributor.author Julian, Vicente es_ES
dc.date.accessioned 2023-05-08T18:01:54Z
dc.date.available 2023-05-08T18:01:54Z
dc.date.issued 2022-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193205
dc.description.abstract [EN] Based on the premise that university student dropout is a social problem in the university ecosystem of any country, technological leverage is a way that allows us to build technological proposals to solve a poorly met need in university education systems. Under this scenario, the study presents and analyzes eight predictive models to forecast university dropout, based on data mining methods and techniques, using WEKA for its implementation, with a dataset of 4365 academic records of students from the National University of Moquegua (UNAM), Peru. The objective is to determine which model presents the best performance indicators to forecast and prevent student dropout. The study aims to propose and compare the accuracy of eight predictive models with balanced classes, using the SMOTE method for the generation of synthetic data. The results allow us to confirm that the predictive model based on Random Forest is the one that presents the highest accuracy and robustness. This study is of great interest to the educational community as it allows for predicting the possible dropout of a student from a university career and being able to take corrective actions both at a global and individual level. The results obtained are highly interesting for the university in which the study has been carried out, obtaining results that generally outperform the results obtained in related works. es_ES
dc.description.sponsorship This work was partially supported by the Spanish Government project TIN2017-89156-R, and the Valencian Government project PROMETEO/2018/002. The research was developed thanks to the support of the National University of Moquegua, which provided the information for the creation of the dataset. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject University student dropout es_ES
dc.subject Predictive model es_ES
dc.subject Data mining es_ES
dc.subject SMOTE es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics11030457 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TIN2017-89156-R//AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONSELLERIA EDUCACIO//PROMETEO%2F2008%2F051//ADVANCES ON AGREEMENT TECHNOLOGIES FOR COMPUTATIONAL ENTITIES / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2008%2F002/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Flores, V.; Heras, S.; Julian, V. (2022). Comparison of Predictive Models with Balanced Classes Using the SMOTE Method for the Forecast of Student Dropout in Higher Education. Electronics. 11(3):1-16. https://doi.org/10.3390/electronics11030457 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics11030457 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\455044 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem