- -

Evaporation Forecasting through Interpretable Data Analysis Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaporation Forecasting through Interpretable Data Analysis Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garrido, M. Carmen es_ES
dc.contributor.author Cadenas, José M. es_ES
dc.contributor.author Bueno-Crespo, Andrés es_ES
dc.contributor.author Martínez-España, Raquel es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.contributor.author Giménez, José G. es_ES
dc.date.accessioned 2023-05-08T18:02:14Z
dc.date.available 2023-05-08T18:02:14Z
dc.date.issued 2022-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193221
dc.description.abstract [EN] Climate change is increasing temperatures and causing periods of water scarcity in arid and semi-arid climates. The agricultural sector is one of the most affected by these changes, having to optimise scarce water resources. An important phenomenon within the water cycle is the evaporation from water reservoirs, which implies a considerable amount of water lost during warmer periods of the year. Indeed, evaporation rate forecasting can help farmers grow crops more sustainably by managing water resources more efficiently in the context of precision agriculture. In this work, we expose an interpretable machine learning approach, based on a multivariate decision tree, to forecast the evaporation rate on a daily basis using data from an Internet of Things (IoT) infrastructure, which is deployed on a real irrigated plot located in Murcia (southeastern Spain). The climate data collected feed the models that provide a forecast of evaporation and a summary of the parameters involved in this process. Finally, the results of the interpretable presented model are validated with the best literature models for evaporation rate prediction, i.e., Artificial Neural Networks, obtaining results very similar to those obtained for them, reaching up to 0.85R2 and 0.6MAE. Therefore, in this work, a double objective is faced: to maintain the performance obtained by the models most frequently used in the problem while maintaining the interpretability of the knowledge captured in it, which allows better understanding the problem and carrying out appropriate actions. es_ES
dc.description.sponsorship This work is derived from R & D project RTC-2017-6389-5 funded by MCIN/AEI/10.13039/ 501100011033 and FEDER a way of making Europe, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033 and by FSE invest in your future. Furthermore, this work is part of the project of I+D+i PID2020-112675RB-C44, funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart agriculture es_ES
dc.subject Evaporation forecast es_ES
dc.subject Interpretable machine learning es_ES
dc.subject IoT es_ES
dc.title Evaporation Forecasting through Interpretable Data Analysis Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics11040536 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112675RB-C44/ES/ADAPTACION DE RECURSOS DE COMPUTO Y RED DESDE LA NUBE AL EXTREMO: EXPLOTANDO LA ORQUESTACION INTELIGENTE Y LA SEGURIDAD (ONOFRE-3-UMU)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC-2017-6389-5-AR//PLANIFICACIÓN Y GESTIÓN DE RECURSOS HÍDRICOS A PARTIR DE ANÁLISIS DE DATOS DE IOT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RYC2018-025580-I//AYUDA CONTRATO RAMON Y CAJAL-CECILIA CANALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Garrido, MC.; Cadenas, JM.; Bueno-Crespo, A.; Martínez-España, R.; Cecilia-Canales, JM.; Giménez, JG. (2022). Evaporation Forecasting through Interpretable Data Analysis Techniques. Electronics. 11(4):1-36. https://doi.org/10.3390/electronics11040536 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics11040536 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\462565 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem