Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Gázquez, Pedro José | es_ES |
dc.contributor.author | Blasco-Tamarit, Encarna | es_ES |
dc.contributor.author | Muñoz-Portero, María José | es_ES |
dc.contributor.author | Solsona-Espriu, Benjamín | es_ES |
dc.contributor.author | Fernández-Domene, Ramón Manuel | es_ES |
dc.contributor.author | Sánchez Tovar, Rita | es_ES |
dc.contributor.author | Garcia-Anton, Jose | es_ES |
dc.date.accessioned | 2023-05-11T18:01:57Z | |
dc.date.available | 2023-05-11T18:01:57Z | |
dc.date.issued | 2022-05-15 | es_ES |
dc.identifier.issn | 0272-8842 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193271 | |
dc.description.abstract | [EN] TiO2/ZnO hybrid nanostructures were formed by electrochemical anodization of titanium and subsequently ZnO electrodeposition. Different Zn(NO3)(2) concentrations were used for electrodeposition (10-60 mM). A structural, morphological, and compositional characterisation was performed using FE-SEM, TEM, AFM, XRD, UV-Visible spectroscopy, and band gap measurements. It was reported that the morphology of the nanostructures changed with the Zn(NO3)2 concentration. Nanosponges were observed for concentrations from 10 mM to 30 mM whereas at 40 mM the morphology changed to well-defined ZnO hexagonal nanorods. At 50 mM a surface covered by ZnO with undefined rods could be seen and, at 60 mM, a morphology of nanoplatelets was observed. Besides, as Zn (NO3)2 concentration increased, the ZnO amount, the roughness, and the ZnO crystalline size also increased, while the band gap decreased. Electrochemical characterisation of nanostructures was performed by water splitting, stability to photocorrosion, EIS, and Mott-Schottky tests. The optimal samples were TiO2/ZnO hybrid nanostructures electrodeposited with 30 mM Zn(NO3)(2), since they were stable against photocorrosion and, compared to TiO2 nanosponges, showed an increase in photoelectrochemical activity of 204%, a lower resistance to charge transfer, and a higher donor density. Overall, the most efficient samples presented an intermediate Znloading because of a maximization of the TiO2-ZnO interaction and the prevention of the formation of non interacting ZnO structures. | es_ES |
dc.description.sponsorship | The authors would like to thank the financial support to the "Agencia Estatal de Investigacion" (PID2019-105844RB-I00/MCIN/AEI/10.13039/501100011033) and the co-finance by the "European Social Fund". The authors also thank the "Generalitat Valenciana" for its help in the Atomic Force Microscope acquisition (IDIFEDER/2018/044). Pedro Jose Navarro Gazquez wants to show his gratitude for the GRANT PEJ2018-003596-A-AR funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future". Authors from UV also thank MINECO (MAT2017-84118-C2-1-R project) and FEDER for funding. SCSIE from UV is also acknowledged for TEM and XRD measurements. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Ceramics International | es_ES |
dc.relation.uri | http://hdl.handle.net/10251/206662 | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | TiO2/ZnO hybrid Nanostructures | es_ES |
dc.subject | Titanium dioxide | es_ES |
dc.subject | Zinc oxide | es_ES |
dc.subject | Zn(NO3)2 concentration | es_ES |
dc.subject | Photoelectrochemical water splitting | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Influence of Zn(NO3)2 concentration during the ZnO electrodeposition on TiO2 nanosponges used in photoelectrochemical applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ceramint.2022.01.339 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F044/ES/MODIFICACIÓN DE FOTOCATALIZADORES DE ÓXIDOS METÁLICOS NANOESTRUCTURADOS PARA LA ELIMINACIÓN DE FÁRMACOS Y PRODUCCIÓN ENERGÉTICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105844RB-I00/ES/NANOTECNOLOGIA ELECTROQUIMICA PARA APLICACIONES CATALITICAS EN LOS CAMPOS MEDIOAMBIENTAL Y ALMACENAJE DE ENERGIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PEJ2018-003596-A-AR/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Navarro-Gázquez, P.; Blasco-Tamarit, E.; Muñoz-Portero, M.; Solsona, B.; Fernández-Domene, M.; Sánchez Tovar, R.; Garcia-Anton, J. (2022). Influence of Zn(NO3)2 concentration during the ZnO electrodeposition on TiO2 nanosponges used in photoelectrochemical applications. Ceramics International. 48(10):14460-14472. https://doi.org/10.1016/j.ceramint.2022.01.339 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ceramint.2022.01.339 | es_ES |
dc.description.upvformatpinicio | 14460 | es_ES |
dc.description.upvformatpfin | 14472 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\456567 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |