- -

Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernandez, Daniel es_ES
dc.contributor.author Cecilia-Canales, José María es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2023-05-12T18:02:00Z
dc.date.available 2023-05-12T18:02:00Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193322
dc.description.abstract [EN] With the proliferation of unmanned aerial vehicles (UAVs) in different contexts and application areas, efforts are being made to endow these devices with enough intelligence so as to allow them to perform complex tasks with full autonomy. In particular, covering scenarios such as disaster areas may become particularly difficult due to infrastructure shortage in some areas, often impeding a cloud-based analysis of the data in near-real time. Enabling AI techniques at the edge is therefore fundamental so that UAVs themselves can both capture and process information to gain an understanding of their context, and determine the appropriate course of action in an independent manner. Towards this goal, in this paper, we take determined steps towards UAV autonomy in a disaster scenario such as a flood. In particular, we use a dataset of UAV images relative to different floods taking place in Spain, and then use an AI-based approach that relies on three widely used deep neural networks (DNNs) for semantic segmentation of images, to automatically determine the regions more affected by rains (flooded areas). The targeted algorithms are optimized for GPU-based edge computing platforms, so that the classification can be carried out on the UAVs themselves, and only the algorithm output is uploaded to the cloud for real-time tracking of the flooded areas. This way, we are able to reduce dependency on infrastructure, and to reduce network resource consumption, making the overall process greener and more robust to connection disruptions. Experimental results using different types of hardware and different architectures show that it is feasible to perform advanced real-time processing of UAV images using sophisticated DNN-based solutions. es_ES
dc.description.sponsorship This work is derived from R&D projects RTI2018-096384-B-I00 and RTC2019-007159-5, as well as the Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033, "FSE invest in your future" and "ERDF A way of making Europe", and by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject UAVs es_ES
dc.subject Flood detection es_ES
dc.subject Natural disasters es_ES
dc.subject Semantic segmentation es_ES
dc.subject DNN es_ES
dc.subject AI es_ES
dc.subject Edge computing es_ES
dc.subject GPU es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs14010223 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2018-025580-I//AYUDA ADICIONAL RAMON Y CAJAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana//AICO%2F2020%2F302/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Hernandez, D.; Cecilia-Canales, JM.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM. (2022). Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform. Remote Sensing. 14(1):1-20. https://doi.org/10.3390/rs14010223 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs14010223 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\452799 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem