- -

A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress

Mostrar el registro completo del ítem

Benito, P.; Ligorio, D.; Bellón, J.; Yenush, L.; Mulet, JM. (2022). A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress. Plant Methods. 18(1):1-17. https://doi.org/10.1186/s13007-022-00943-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193386

Ficheros en el ítem

Metadatos del ítem

Título: A fast method to evaluate in a combinatorial manner the synergistic effect of different biostimulants for promoting growth or tolerance against abiotic stress
Autor: Benito, Patricia Ligorio, Daniele Bellón, Javier Yenush, Lynne Mulet, José Miguel
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Background: According to the most popular defnition, a biostimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efciency, abiotic stress tolerance and/or crop quality traits, ...[+]
Palabras clave: Biostimulant , Synergies , Saccharomyces cerevisiae , Arabidopsis thaliana , Abiotic stress , Growth promoters , Model system , Salinity , Drought
Derechos de uso: Reconocimiento (by)
Fuente:
Plant Methods. (issn: 1746-4811 )
DOI: 10.1186/s13007-022-00943-6
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s13007-022-00943-6
Código del Proyecto:
info:eu-repo/grantAgreement/CDTI//EXP 00137666%2FIDI-20210456/
Agradecimientos:
This investigation was funded by the CDTI program project EXP 00137666/IDI-20210456. awarded to CALDIC Iberica S.L. and the research contract. "DESARROLLO DE FORMULADOS BIOESTIMULANTES Y BIOFERTILIZANTES INNOVADORES DE ...[+]
Tipo: Artículo

References

FAO. High level experts forum-how to feed the world in 2050. Rome; 2012.

Pingali PL. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA. 2012;31:12302–8.

Pingali PL, Rosegrant MW. Confronting the environmental consequences of the green revolution in Asia. 1994. [+]
FAO. High level experts forum-how to feed the world in 2050. Rome; 2012.

Pingali PL. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA. 2012;31:12302–8.

Pingali PL, Rosegrant MW. Confronting the environmental consequences of the green revolution in Asia. 1994.

Burney JA, Davis SJ, Lobell DB. Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci. 2022;107:12052–7.

Castillo VM. La Estrategia Temática para la Protección del Suelo: un instrumento para el uso sostenible de los suelos en Europa. ISBN 1697-2473. 2004.

FAO. The future of food and agriculture. Rome; 2008.

Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58.

Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ. Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol. 2000;51:463–99. https://doi.org/10.1146/annurev.arplant.51.1.463.

Zhu J-K, Bressan R, Pardo JM. Salt and crops: salinity tolerance stomatal development view project adventitious root initiation of micropropagted rose. View project. 2005. Available from: https://www.researchgate.net/publication/253157682

Hu Y, Schmidhalter U. Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci. 2005;168:541–9. https://doi.org/10.1002/jpln.200420516.

Tuteja N. Mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H, editors. Methods in enzymology. London: Academic Press; 2007. p. 419–38.

Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60:324–49.

du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Horticult. 2015;196:3–14.

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in plant science: a global perspective. Front Plant Sci. 2017;7:2049. https://doi.org/10.3389/fpls.2016.02049.

Rouphael Y, Colla G. Editorial: biostimulants in agriculture. Front Plant Sci. 2020;11:40. https://doi.org/10.3389/fpls.2020.00040.

Drobek M, Frąc M, Cybulska J. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy. 2019;9:335.

Colla G, Cardarelli M, Bonini P, Rouphael Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience. 2017;52:1214–20.

Giordano M, El-Nakhel C, Caruso G, Cozzolino E, de Pascale S, Kyriacou MC, et al. Stand-alone and combinatorial effects of plant-based biostimulants on the production and leaf quality of perennial wall rocket. Plants MDPI AG. 2020;9:1–15.

Saporta R, Bou C, Frías V, Mulet JM. A method for a fast evaluation of the biostimulant potential of different natural extracts for promoting growth or tolerance against abiotic stress. Agronomy. 2019;9:143.

Ríos G, Cabedo M, Rull B, Yenush L, Serrano R, Mulet JM. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Res. 2013;13:97–106.

Baker Brachmann C, Davies A, Cost GJ, Caputo E, Li J, Hieter P, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14:115–32.

van Heerden JH, Kempe H, Doerr A, Maarleveld T, Nordholt N, Bruggeman FJ. Statistics and simulation of growth of single bacterial cells: illustrations with B. subtilis and E. coli. Sci Rep. 2017;7:1–11.

Bissoli G, Niñoles R, Fresquet S, Palombieri S, Bueso E, Rubio L, et al. Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. Plant J. 2012;70:704–16.

Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a tool to investigate plant potassium and sodium transporters. Int J Mol Sci. 2019;20(9):2133.

Montesinos C, Gaxiola R, Ríos G, Forment J, Leube M, Mulet JM, et al. Functional genomics of salt tolerance: the yeast overexpression approach. In: International symposium on managing greenhouse crops in saline environment 2003; p. 31–8.

Mulet JM, Alemany B, Ros R, Calvete JJ, Serrano R. Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast. 2004;21:303–12. https://doi.org/10.1002/yea.1076.

Gisbert C, Timoneda A, Porcel R, Ros R, Mulet JM. Overexpression of bvhb2, a class 2 non-symbiotic hemoglobin from sugar beet, confers drought-induced withering resistance and alters iron content in tomato. Agronomy. 2020;10:1754.

Chapagain BP, Wiesman Z. Tsror (Lahkim) L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind Crops Prod. 2007;26:109–15.

Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci. 2019;10:655.

Desoky ESM, ElSayed AI, Merwad ARMA, Rady MM. Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol Biochem. 2019;142:292–302.

Rady MM, Desoky ESM, Elrys AS, Boghdady MS. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S Afr J Bot. 2019;121:294–305.

El-Abagy H, El-Greadly N. Studies on the effect of putrescine, yeast and vitamin C on growth, yield and physiological responses of eggplant (Solanum melongena L.) under sandy soil conditions. Austral J Basic Appl Sci. 2008;2:296–300.

Campobenedetto C, Agliassa C, Mannino G, Vigliante I, Contartese V, Secchi F, et al. A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigateswater stress effects on tomato (Solanum lycopersicum L.). Agriculture. 2021;11:557.

Mannino G, Campobenedetto C, Vigliante I, Contartese V, Gentile C, Bertea CM. The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules. 2020;10:1–19.

Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y. Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01782.

Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, et al. A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot. 1999;50:1023–36.

Saa S, Olivos-Del Rio A, Castro S, Brown PH. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill] D. A. Webb). Front Plant Sci. 2015. https://doi.org/10.3389/fpls.2015.00087.

Goñi O, Quille P, O’Connell S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem. 2018;126:63–73.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem