Mostrar el registro sencillo del ítem
dc.contributor.author | Liu, Ying | es_ES |
dc.contributor.author | Andersson, Mariette | es_ES |
dc.contributor.author | GRANELL RICHART, ANTONIO | es_ES |
dc.contributor.author | Cardi, Teodoro | es_ES |
dc.contributor.author | Hofvander, Per | es_ES |
dc.contributor.author | Nicolia, Alessandro | es_ES |
dc.date.accessioned | 2023-05-15T18:02:01Z | |
dc.date.available | 2023-05-15T18:02:01Z | |
dc.date.issued | 2022-09 | es_ES |
dc.identifier.issn | 0721-7714 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193389 | |
dc.description.abstract | [EN] Key message We have established a DNA-free genome editing method via ribonucleoprotein-based CRISPR/Cas9 in cultivated tomato and obtained mutant plants regenerated from transfected protoplasts with a high mutation rate. The application of genome editing as a research and breeding method has provided many possibilities to improve traits in many crops in recent years. In cultivated tomato (Solanum lycopersicum), so far only stable Agrobacterium-mediated transformation carrying CRISPR/Cas9 reagents has been established. Shoot regeneration from transfected protoplasts is the major bottleneck in the application of DNA-free genome editing via ribonucleoprotein-based CRISPR/Cas9 method in cultivated tomato. In this study, we report the implementation of a transgene-free breeding method for cultivated tomato by CRISPR/Cas9 technology, including the optimization of protoplast isolation and overcoming the obstacle in shoot regeneration from transfected protoplasts. We have identified that the shoot regeneration medium containing 0.1 mg/L IAA and 0.75 mg/L zeatin was the best hormone combination with a regeneration rate of up to 21.3%. We have successfully obtained regenerated plants with a high mutation rate four months after protoplast isolation and transfection. Out of 110 regenerated M-0 plants obtained, 35 (31.8%) were mutated targeting both SP and SP5G genes simultaneously and the editing efficiency was up to 60% in at least one allele in either SP or SP5G genes. | es_ES |
dc.description.sponsorship | Open access funding provided by Swedish University of Agricultural Sciences. This study is supported by a grant from Nilsson-Ehle-donationerna. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Plant Cell Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Mesophyll protoplast regeneration | es_ES |
dc.subject | CRISPR | es_ES |
dc.subject | Cas9 | es_ES |
dc.subject | Ribonucleoprotein | es_ES |
dc.subject | SP and SP5G genes | es_ES |
dc.title | Establishment of a DNA-free genome editing and protoplast regeneration method in cultivated tomato (Solanum lycopersicum) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00299-022-02893-8 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Liu, Y.; Andersson, M.; Granell Richart, A.; Cardi, T.; Hofvander, P.; Nicolia, A. (2022). Establishment of a DNA-free genome editing and protoplast regeneration method in cultivated tomato (Solanum lycopersicum). Plant Cell Reports. 41(9):1843-1852. https://doi.org/10.1007/s00299-022-02893-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00299-022-02893-8 | es_ES |
dc.description.upvformatpinicio | 1843 | es_ES |
dc.description.upvformatpfin | 1852 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 35773498 | es_ES |
dc.identifier.pmcid | PMC9395478 | es_ES |
dc.relation.pasarela | S\486912 | es_ES |
dc.contributor.funder | Sveriges Lantbruksuniversitet, Suecia | es_ES |
dc.description.references | Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128. https://doi.org/10.1007/s00299-016-2062-3 | es_ES |
dc.description.references | Andersson M, Turesson H, Olsson N et al (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384. https://doi.org/10.1111/ppl.12731 | es_ES |
dc.description.references | Bae S, Kweon J, Kim HS, Kim J (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Publ Gr 11:705–706. https://doi.org/10.1038/nmeth.3015 | es_ES |
dc.description.references | Brooks C, Nekrasov V, Lipppman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297. https://doi.org/10.1104/pp.114.247577 | es_ES |
dc.description.references | Carmel-Goren L, Liu YS, Lifschitz E, Zamir D (2003) The self-pruning gene family in tomato. Plant Mol Biol 52:1215–1222. https://doi.org/10.1023/B:PLAN.0000004333.96451.11 | es_ES |
dc.description.references | Char SN, Neelakandan AK, Nahampun H et al (2016) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268. https://doi.org/10.1111/pbi.12611 | es_ES |
dc.description.references | Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049 | es_ES |
dc.description.references | Concordet J, Haeussler M (2018) CRISPOR : intuitive guide selection for CRISPR / Cas9 genome editing experiments and screens. Nucleic Acids Res 46:242–245. https://doi.org/10.1093/nar/gky354 | es_ES |
dc.description.references | Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C et al (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95:5–16. https://doi.org/10.1111/tpj.13932 | es_ES |
dc.description.references | Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 1:52. https://doi.org/10.1155/2007/64358 | es_ES |
dc.description.references | Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635. https://doi.org/10.1016/j.cell.2021.01.005 | es_ES |
dc.description.references | Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82. https://doi.org/10.1016/j.bbrc.2015.09.117 | es_ES |
dc.description.references | Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:1–12. https://doi.org/10.1093/nar/gkt780 | es_ES |
dc.description.references | Kwon CT, Heo J, Lemmon ZH et al (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat Biotechnol 38:182–188. https://doi.org/10.1038/s41587-019-0361-2 | es_ES |
dc.description.references | Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654 | es_ES |
dc.description.references | Li T, Yang X, Yu Y et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol. https://doi.org/10.1038/nbt.4273 | es_ES |
dc.description.references | Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. https://doi.org/10.1016/j.jgg.2013.12.001 | es_ES |
dc.description.references | Liang Z, Chen K, Li T et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:1–5. https://doi.org/10.1038/ncomms14261 | es_ES |
dc.description.references | Lin C-S, Hsu C-T, Yuan Y-H et al (2022) DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. Plant Physiol. https://doi.org/10.1093/plphys/kiac022 | es_ES |
dc.description.references | Lowder LG, Zhang D, Baltes NJ et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985. https://doi.org/10.1104/pp.15.00636 | es_ES |
dc.description.references | Morgan A, Cocking EC (1982) Plant Regeneration from protoplasts of Lycopersicon esculentum Mill. Z Pflanzenphysiol 106:97–104. https://doi.org/10.1016/s0044-328x(82)80071-8 | es_ES |
dc.description.references | Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655 | es_ES |
dc.description.references | Nicolia A, Andersson M, Hofvander P et al (2021a) Tomato protoplasts as cell target for ribonucleoprotein ( RNP )- mediated multiplexed genome editing. Plant Cell Tissue Organ Cult 144:463–467. https://doi.org/10.1007/s11240-020-01954-8 | es_ES |
dc.description.references | Nicolia A, Fält A-S, Hofvander P, Andersson M (2021b) Protoplast-Based Method for Genome Editing in Tetraploid Potato Methods in Molecular Biology. Springer, New york, pp 177–186. https://doi.org/10.1007/978-1-0716-1201-9_12 | es_ES |
dc.description.references | Niedz RP, Rutter SM, Handley LW, Sink KC (1985) Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci 39:199–204. https://doi.org/10.1016/0168-9452(85)90175-X | es_ES |
dc.description.references | Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:1–10. https://doi.org/10.1038/srep24765 | es_ES |
dc.description.references | Peres LEP, Morgante PG, Vecchi C et al (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44. https://doi.org/10.1023/A:1010631731559 | es_ES |
dc.description.references | Pnueli L, Carmel-Goren L, Hareven D et al (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989. https://doi.org/10.1242/dev.125.11.1979 | es_ES |
dc.description.references | Sakata Y, NISHIO T, TAKAYANAGI K, (1987) Plant regeneration from mesophyll protoplasts of tomato cv. Ponderosa J Jpn Soc Hortic Sci 56:334–338. https://doi.org/10.2503/jjshs.56.334 | es_ES |
dc.description.references | Shahin EA (1985) Totipotency of tomato protoplasts. Theor Appl Genet 69:235–240. https://doi.org/10.1007/BF00662431 | es_ES |
dc.description.references | Sidorov V, Wang D, Nagy ED et al (2021) Heritable DNA-free genome editing of canola (Brassica napus L) using PEG-mediated transfection of isolated protoplasts. Vitr Cell Dev Biol Plant. https://doi.org/10.1007/s11627-021-10236-7 | es_ES |
dc.description.references | Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1994) Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon esculentum) plants. Plant Sci 97:53–60. https://doi.org/10.1016/0168-9452(94)90107-4 | es_ES |
dc.description.references | Soyk S, Müller NA, Park SJ et al (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49:162–168. https://doi.org/10.1038/ng.3733 | es_ES |
dc.description.references | Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:1–7. https://doi.org/10.1038/ncomms13274 | es_ES |
dc.description.references | Tan MMC, Rietveld EM et al (1987) Regeneration of leaf mesophyll protoplasts of tomato cultivars (L. esculentum): factors important for efficient protoplast culture and plant regeneration. Plant Cell Rep 6:172–175. https://doi.org/10.1007/BF00268470 | es_ES |
dc.description.references | Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-00501-4 | es_ES |
dc.description.references | Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-Guided genome editing for target gene mutations in wheat. G3 Genes. Genomes Genet 3:2233–2238. https://doi.org/10.1534/g3.113.008847 | es_ES |
dc.description.references | Wang S, Zhang S, Wang W et al (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476. https://doi.org/10.1007/s00299-015-1816-7 | es_ES |
dc.description.references | Woo JW, Kim J, Il KS et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1165. https://doi.org/10.1038/nbt.3389 | es_ES |
dc.description.references | Yan L, Wei S, Wu Y et al (2015) High-Efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823. https://doi.org/10.1016/j.molp.2015.10.004 | es_ES |
dc.description.references | Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms12617 | es_ES |
dc.description.references | Zhang Y, Cheng Y, Fang H et al (2022) Highly efficient genome editing in plant protoplasts by ribonucleoprotein delivery of CRISPR-Cas12a nucleases. Front Genome Ed 4:1–11. https://doi.org/10.3389/fgeed.2022.780238 | es_ES |
dc.description.references | Zhou H, Liu B, Weeks DP et al (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914. https://doi.org/10.1093/nar/gku806 | es_ES |