- -

Performance comparison of least squares, iterative and global L1 Norm minimization and exhaustive search methods for outlier detection in leveling networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance comparison of least squares, iterative and global L1 Norm minimization and exhaustive search methods for outlier detection in leveling networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baselga Moreno, Sergio es_ES
dc.contributor.author Klein, Ivandro es_ES
dc.contributor.author Suraci, Stefano Sampaio es_ES
dc.contributor.author Castro de Oliveira, Leonardo es_ES
dc.contributor.author Matsuoka, Marcelo Tomio es_ES
dc.contributor.author Rofatto, Vinicius Francisco es_ES
dc.date.accessioned 2023-05-16T18:01:22Z
dc.date.available 2023-05-16T18:01:22Z
dc.date.issued 2020 es_ES
dc.identifier.issn 1214-9705 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193437
dc.description.abstract [EN] Different approaches have been proposed to determine the possible outliers existing in a dataset. The most widely used consists in the application of the data snooping test over the least squares adjustment results. This strategy is very likely to succeed for the case of zero or one outliers but, contrary to what is often assumed, the same is not valid for the multiple outlier case, even in its iterative application scheme. Robust estimation, computed by iteratively reweighted least squares or a global optimization method, is other alternative approach which often produces good results in the presence of outliers, as is the case of exhaustive search methods that explore elimination of every possible set of observations. General statements, having universal validity, about the best way to compute a geodetic network with multiple outliers are impossible to be given due to the many different factors involved (type of network, number and size of possible errors, available computational force, etc.). However, we see in this paper that some conclusions can be drawn for the case of a leveling network, which has a certain geometrical simplicity compared with planimetric or three-dimensional networks though a usually high number of unknowns and relatively low redundancy. Among other results, we experience the occasional failure in the iterative application of the data snooping test, the relatively successful results obtained by both methods computing the robust estimator, which perform equivalently in this case, and the successful application of the exhaustive search method, for different cases that become increasingly intractable as the number of outliers approaches half the number of degrees of freedom of the network. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Rock Structure and Mechanics, AS CR es_ES
dc.relation.ispartof Acta Geodynamica et Geomaterialia es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Geodetic networks es_ES
dc.subject Leveling es_ES
dc.subject Robust estimation es_ES
dc.subject Outlier detection es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Performance comparison of least squares, iterative and global L1 Norm minimization and exhaustive search methods for outlier detection in leveling networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.13168/AGG.2020.0031 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation Baselga Moreno, S.; Klein, I.; Suraci, SS.; Castro De Oliveira, L.; Matsuoka, MT.; Rofatto, VF. (2020). Performance comparison of least squares, iterative and global L1 Norm minimization and exhaustive search methods for outlier detection in leveling networks. Acta Geodynamica et Geomaterialia. 17(4):425-438. https://doi.org/10.13168/AGG.2020.0031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.13168/AGG.2020.0031 es_ES
dc.description.upvformatpinicio 425 es_ES
dc.description.upvformatpfin 438 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\431771 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem