Mostrar el registro sencillo del ítem
dc.contributor.author | Klein, Ivandro![]() |
es_ES |
dc.contributor.author | Suraci, Stefano Sampaio![]() |
es_ES |
dc.contributor.author | de Oliveira, Leonardo Castro![]() |
es_ES |
dc.contributor.author | Rofatto, Vinicius Francisco![]() |
es_ES |
dc.contributor.author | Matsuoka, Marcelo Tomio![]() |
es_ES |
dc.contributor.author | Baselga Moreno, Sergio![]() |
es_ES |
dc.date.accessioned | 2023-05-18T18:00:17Z | |
dc.date.available | 2023-05-18T18:00:17Z | |
dc.date.issued | 2022-01-02 | es_ES |
dc.identifier.issn | 0039-6265 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193468 | |
dc.description.abstract | [EN] The goal of this paper is to evaluate the outlier identification performance of iterative Data Snooping (IDS) and L-1-norm in levelling networks by considering the redundancy of the network, number and size of the outliers. For this purpose, several Monte-Carlo experiments were conducted into three different levelling networks configurations. In addition, a new way to compare the results of IDS based on Least Squares (LS) residuals and robust estimators such as the L-1-norm has also been developed and presented. From the perspective of analysis only according to the success rate, it is shown that L-1-norm performs better than IDS for the case of networks with low redundancy ((r) over bar < 0.5), especially for cases where more than one outlier is present in the dataset. In the relationship between false positive rate and outlier identification success rate, however, IDS performs better than L-1-norm, independently of the levelling network configuration, number and size of outliers. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Maney Publishing | es_ES |
dc.relation.ispartof | Survey Review | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Data snooping | es_ES |
dc.subject | L-1-norm | es_ES |
dc.subject | Outliers | es_ES |
dc.subject | Levelling network success rate | es_ES |
dc.subject | False positive rate | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | An attempt to analyse Iterative Data Snooping and L1-norm based on Monte Carlo simulation in the context of leveling networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00396265.2021.1878338 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica | es_ES |
dc.description.bibliographicCitation | Klein, I.; Suraci, SS.; De Oliveira, LC.; Rofatto, VF.; Matsuoka, MT.; Baselga Moreno, S. (2022). An attempt to analyse Iterative Data Snooping and L1-norm based on Monte Carlo simulation in the context of leveling networks. Survey Review. 54(382):70-78. https://doi.org/10.1080/00396265.2021.1878338 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00396265.2021.1878338 | es_ES |
dc.description.upvformatpinicio | 70 | es_ES |
dc.description.upvformatpfin | 78 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 382 | es_ES |
dc.relation.pasarela | S\448247 | es_ES |