Mostrar el registro sencillo del ítem
dc.contributor.author | Tordecilla, Rafael D. | es_ES |
dc.contributor.author | Martins, Leandro do C. | es_ES |
dc.contributor.author | Panadero, Javier | es_ES |
dc.contributor.author | Copado, Pedro J. | es_ES |
dc.contributor.author | Pérez Bernabeu, Elena | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2023-05-22T18:02:37Z | |
dc.date.available | 2023-05-22T18:02:37Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193516 | |
dc.description.abstract | [EN] In the context of logistics and transportation, this paper discusses how simheuristics can be extended by adding a fuzzy layer that allows us to deal with complex optimization problems with both stochastic and fuzzy uncertainty. This hybrid approach combines simulation, metaheuristics, and fuzzy logic to generate near-optimal solutions to large scale NP-hard problems that typically arise in many transportation activities, including the vehicle routing problem, the arc routing problem, or the team orienteering problem. The methodology allows us to model different components-such as travel times, service times, or customers' demands-as deterministic, stochastic, or fuzzy. A series of computational experiments contribute to validate our hybrid approach, which can also be extended to other optimization problems in areas such as manufacturing and production, smart cities, telecommunication networks, etc. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T), and the Erasmus+ program (2019-I-ES01-KA103-062602). This research received no external funding. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Transportation | es_ES |
dc.subject | Vehicle routing problems | es_ES |
dc.subject | Metaheuristics | es_ES |
dc.subject | Simulation-optimization | es_ES |
dc.subject | Fuzzy techniques | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Fuzzy Simheuristics for Optimizing Transportation Systems: Dealing with Stochastic and Fuzzy Uncertainty | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app11177950 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111100RB-C21/ES/ALGORITMOS AGILES, INTERNET DE LAS COSAS, Y ANALITICA DE DATOS PARA UN TRANSPORTE SOSTENIBLE EN CIUDADES INTELIGENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//RED2018-102642-T/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Erasmus+//2019-I-ES01- KA103-062602/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Tordecilla, RD.; Martins, LDC.; Panadero, J.; Copado, PJ.; Pérez Bernabeu, E.; Juan, AA. (2021). Fuzzy Simheuristics for Optimizing Transportation Systems: Dealing with Stochastic and Fuzzy Uncertainty. Applied Sciences. 11(17):1-22. https://doi.org/10.3390/app11177950 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app11177950 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\456503 | es_ES |
dc.contributor.funder | Erasmus+ | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |