- -

Crowd Monitoring in Smart Destinations Based on GDPR-Ready Opportunistic RF Scanning and Classification of WiFi Devices to Identify and Classify Visitors' Origins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crowd Monitoring in Smart Destinations Based on GDPR-Ready Opportunistic RF Scanning and Classification of WiFi Devices to Identify and Classify Visitors' Origins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berenguer, Alberto es_ES
dc.contributor.author Fernández Ros, David es_ES
dc.contributor.author Gómez-Oliva, Andrea es_ES
dc.contributor.author Ivars-Baidal, Josep A. es_ES
dc.contributor.author Jara, Antonio J. es_ES
dc.contributor.author Laborda, Jaime es_ES
dc.contributor.author Mazón, Jose-Norberto es_ES
dc.contributor.author Perles, Angel es_ES
dc.date.accessioned 2023-05-25T18:01:06Z
dc.date.available 2023-05-25T18:01:06Z
dc.date.issued 2022-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193599
dc.description.abstract [EN] Crowd monitoring was an essential measure to deal with over-tourism problems in urban destinations in the pre-COVID era. It will play a crucial role in the pandemic scenario when restarting tourism and making destinations safer. Notably, a Destination Management Organisation (DMO) of a smart destination needs to deploy a technological layer for crowd monitoring that allows data gathering in order to count visitors and distinguish them from residents. The correct identification of visitors versus residents by a DMO, while privacy rights (e.g., Regulation EU 2016/679, also known as GDPR) are ensured, is an ongoing problem that has not been fully solved. In this paper, we describe a novel approach to gathering crowd data by processing (i) massive scanning of WiFi access points of the smart destination to find SSIDs (Service Set Identifier), as well as (ii) the exposed Preferred Network List (PNL) containing the SSIDs of WiFi access points to which WiFi-enabled mobile devices are likely to connect. These data enable us to provide the number of visitors and residents of a crowd at a given point of interest of a tourism destination. A pilot study has been conducted in the city of Alcoi (Spain), comparing data from our approach with data provided by manually filled surveys from the Alcoi Tourist Info office, with an average accuracy of 83%, thus showing the feasibility of our policy to enrich the information system of a smart destination. es_ES
dc.description.sponsorship This research was carried out within the research Project Alcoi Tourist Lab framework, co-funded by the Alcoi City Council & the Valencian Innovation Agency. The research was also partially funded by project UAPOSTCOVID19-10 from the University of Alicante. Finally, this research was partly supported by the EU CEF project GreenMov, CARM HORECOV-21 project (https://horecovid.com/(accessed on 12 January 2022)). is financed through the Call for Public Aid destined to finance the Strategic projects contemplated in the Research and Innovation Strategy for Smart Specialization -RIS3MUR Strategy by the Autonomous Community of the Region of Murcia, through the Ministry of Economic Development, Tourism and Employment within the framework of the FEDER Region of Murcia Operational Program 2014-2020 within the framework Thematic Objective 1. Strengthen research, technological development and innovation by 80% and with CARM's own funds in 20%, and finally the EU project H2020 NIoVE (833742). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Smart destination es_ES
dc.subject GDPR es_ES
dc.subject Crowd monitoring es_ES
dc.subject WiFi scanning es_ES
dc.subject People counting es_ES
dc.subject IoT es_ES
dc.subject FIWARE es_ES
dc.subject RF scanning es_ES
dc.subject COVID-19 es_ES
dc.subject Smart Cities es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Crowd Monitoring in Smart Destinations Based on GDPR-Ready Opportunistic RF Scanning and Classification of WiFi Devices to Identify and Classify Visitors' Origins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics11060835 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/833742/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//CARM HORECOV-21//GreenMov/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Berenguer, A.; Fernández Ros, D.; Gómez-Oliva, A.; Ivars-Baidal, JA.; Jara, AJ.; Laborda, J.; Mazón, J.... (2022). Crowd Monitoring in Smart Destinations Based on GDPR-Ready Opportunistic RF Scanning and Classification of WiFi Devices to Identify and Classify Visitors' Origins. Electronics. 11(6):1-18. https://doi.org/10.3390/electronics11060835 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics11060835 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.subject.asignatura Competitividad e inteligencia turística 34122 / Q - Máster universitario en inteligencia turística 2317 es_ES
dc.relation.pasarela S\488804 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat d'Alacant es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Comunidad Autónoma de la Región de Murcia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem