Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, J.R. | es_ES |
dc.contributor.author | Tiseira, Andrés-Omar | es_ES |
dc.contributor.author | López-Carrillo, Juan Antonio | es_ES |
dc.contributor.author | Hervás-Gómez, Natalia | es_ES |
dc.date.accessioned | 2023-05-26T18:01:58Z | |
dc.date.available | 2023-05-26T18:01:58Z | |
dc.date.issued | 2022-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/193639 | |
dc.description.abstract | [EN] The widespread trend of pursuing higher efficiencies in radial turbochargers led to the prompting of this work. A 3D-printed model of the static parts of a radial variable geometry turbine, the vaned nozzle, and the volute, was developed. This model was up-scaled from the actual reference turbine to place sensors and characterize the flow around the nozzle vanes, including the tip gap. In this study, a computational model of the scaled-up turbine was carried out to verify the results in two ways. For this model, firstly compared with an already validated CFD turbine model of the real device (which includes a rotor), its operating range was extended to different nozzle positions, and we checked the issues with rotor-stator interactions as well as the influence of elements such as the screws of the turbine stator. After showing results for different nozzle openings, another purpose of the study was to check the effect of varying the clearance over the tip of the stator vanes on the tip leakage flow since the 3D-printed model has variable gap height configurations. | es_ES |
dc.description.sponsorship | This research work was supported by Grant PDC2021-120821-I00, funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGeneration EI/PRTR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Turbocharger | es_ES |
dc.subject | Radial turbine | es_ES |
dc.subject | CFD analysis | es_ES |
dc.subject | Nozzle vane | es_ES |
dc.subject | Variable geometry turbine | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Numerical Evaluation in a Scaled Rotor-Less Nozzle Vaned Radial Turbine Model under Variable Geometry Conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app12147254 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//PDC2021-120821-I00//RECUPERACION DE ENERGIA DE GASES DE ESCAPE PARA LA OPTIMIZACION DE MOTORES DE OXI-COMBUSTION DE E-COMBUSTIBLES CON CAPTURA DE CO2 DE ALTA PUREZA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Serrano, J.; Tiseira, A.; López-Carrillo, JA.; Hervás-Gómez, N. (2022). Numerical Evaluation in a Scaled Rotor-Less Nozzle Vaned Radial Turbine Model under Variable Geometry Conditions. Applied Sciences. 12(14):1-17. https://doi.org/10.3390/app12147254 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app12147254 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 14 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\469259 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |