- -

Ensemble random forest filter: An alternative to the ensemble Kalman filter for inverse modeling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Ensemble random forest filter: An alternative to the ensemble Kalman filter for inverse modeling

Show full item record

A. Godoy, V.; Napa-García, GF.; Gómez-Hernández, JJ. (2022). Ensemble random forest filter: An alternative to the ensemble Kalman filter for inverse modeling. Journal of Hydrology. 615:1-13. https://doi.org/10.1016/j.jhydrol.2022.128642

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/193647

Files in this item

Item Metadata

Title: Ensemble random forest filter: An alternative to the ensemble Kalman filter for inverse modeling
Author: A. Godoy, Vanessa Napa-García, Gian F. Gómez-Hernández, J. Jaime
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Issued date:
Abstract:
[EN] The ensemble random forest filter (ERFF) is presented as an alternative to the ensemble Kalman filter (EnKF) for inverse modeling. The EnKF is a data assimilation approach that forecasts and updates parameter estimates ...[+]
Subjects: Groundwater flow , Inverse modeling , Random forest , Bayesian methods
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Hydrology. (issn: 0022-1694 )
DOI: 10.1016/j.jhydrol.2022.128642
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jhydrol.2022.128642
Project ID:
info:eu-repo/grantAgreement/AEI//PID2019-109131RB-I00//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/
info:eu-repo/grantAgreement/AEI//PRE2020-093145//APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/
info:eu-repo/grantAgreement/EC//1923/
Thanks:
The authors acknowledge grant PID2019-109131RB-I00 funded by MCIN/AEI/10.13039/501100011033 and project InTheMED, which is part of the PRIMA Programme supported by the European Union's Horizon 2020 Research and Innovation ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record