- -

Senescence and the Impact on Biodistribution of Different Nanosystems: the Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and Elder Animals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Senescence and the Impact on Biodistribution of Different Nanosystems: the Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and Elder Animals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rezende dos Reis, Sara Rhaissa es_ES
dc.contributor.author Rocha Pinto, Suyene es_ES
dc.contributor.author Duarte de Menezes, Frederico es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Ricci-Junior, Eduardo es_ES
dc.contributor.author Rebelo Alencar, Luciana Magalhaes es_ES
dc.contributor.author Helal-Neto, Edward es_ES
dc.contributor.author Da Silva De Barros, Aline Oliveira es_ES
dc.contributor.author Lisboa, Patricia Cristina es_ES
dc.contributor.author Santos-Oliveira, Ralph es_ES
dc.date.accessioned 2023-05-29T18:02:30Z
dc.date.available 2023-05-29T18:02:30Z
dc.date.issued 2020-01-22 es_ES
dc.identifier.issn 0724-8741 es_ES
dc.identifier.uri http://hdl.handle.net/10251/193703
dc.description.abstract [EN] Purposes Senescence is an inevitable and irreversible process, which may lead to loss in muscle and bone density, decline in brain volume and loss in renal clearance. Although aging is a well-known process, few studies on the consumption of nanodrugs by elderly people were performed. Methods We evaluated three different nanosystems: i) carbon based nanosystem (Graphene Quantum Dots, GQD), ii) polymeric nanoparticles and mesoporous silica (magnetic core mesoporous silica, MMSN). In previous studies, our group has already characterized GQD and MMSN nanoparticles by dynamic light scattering analysis, atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman analysis, fluorescence and absorbance. The polymeric nanoparticle has been characterized by AFM and DLS. All the nanosystems were radiolabeled with 99 m-Tc by. The in vivo biodistribution/tissue deposition analysis evaluation was done using elder (PN270) and young (PN90) mice injected with radioactive nanosystems. Results The nanosystems used in this study were well-formed as the radiolabeling processes were stable. Biodistribution analysis showed that there is a decrease in the uptake of the nanoparticles in elder mice when compared to young mice, showing that is necessary to increase the initial dose in elder people to achieve the same concentration when compared to young animals. Conclusion The discrepancy on tissue distribution of nanosystems between young and elder individuals must be monitored, as the therapeutic effect will be different in the groups. Noteworthy, this data is an alarm that some specific conditions must be evaluated before commercialization of nano-drugs. Changes between younger and elderly individuals are undoubtedly, especially in drug tissue deposition, biodistribution and pharmacokinetics. The same thought should be applied to nanoparticles. A comprehensive analysis on how age discrepancy change the biological behavior of nanoparticles has been performed. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Pharmaceutical Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Elderly es_ES
dc.subject Graphene es_ES
dc.subject Mesoporous slica es_ES
dc.subject Biodistribution es_ES
dc.subject Nanomaterial es_ES
dc.subject Youth es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Senescence and the Impact on Biodistribution of Different Nanosystems: the Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and Elder Animals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11095-019-2754-9 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Rezende Dos Reis, SR.; Rocha Pinto, S.; Duarte De Menezes, F.; Martínez-Máñez, R.; Ricci-Junior, E.; Rebelo Alencar, LM.; Helal-Neto, E.... (2020). Senescence and the Impact on Biodistribution of Different Nanosystems: the Discrepancy on Tissue Deposition of Graphene Quantum Dots, Polycaprolactone Nanoparticle and Magnetic Mesoporous Silica Nanoparticles in Young and Elder Animals. Pharmaceutical Research. 37(3):1-12. https://doi.org/10.1007/s11095-019-2754-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11095-019-2754-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 31970499 es_ES
dc.relation.pasarela S\418251 es_ES
dc.description.references Liu Y, Gao W, Koellmann C, Le Clerc S, Huls A, Li B, et al. Genome-wide scan identified genetic variants associated with skin aging in a Chinese female population. J Dermatol Sci. 2019. https://doi.org/10.1016/j.jdermsci.2019.08.010. es_ES
dc.description.references Thomas N, Gurvich C, Kulkarni J. Sex differences in aging and associated biomarkers. Adv Exp Med Biol. 2019;1178:57–76. https://doi.org/10.1007/978-3-030-25650-0_4. es_ES
dc.description.references Shavlakadze T, Morris M, Fang J, Wang SX, Zhu J, Zhou W, et al. Age-related gene expression signature in rats demonstrate early, late, and linear transcriptional changes from multiple tissues. Cell Rep. 2019;28:3263–3273.e3. https://doi.org/10.1016/j.celrep.2019.08.043. es_ES
dc.description.references Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem medica. 2019;29:30501. https://doi.org/10.11613/bm.2019.030501. es_ES
dc.description.references Victorelli S, Passos JF. Telomeres and cell senescence. EBioMedicine. 2017;21:14–20. https://doi.org/10.1016/j.ebiom.2017.03.027. es_ES
dc.description.references M. Chiriaco, G. Georgiopoulos, E. Duranti, L. Antonioli, I. Puxeddu, M. Nannipieri, J. Rosada, C. Blandizzi, S. Taddei, A. Virdis, et al., Inflammation and vascular ageing: from telomeres to novel emerging mechanisms, high blood press. Cardiovasc. Prev. (2019) 321–329. https://doi.org/10.1007/s40292-019-00331-7. es_ES
dc.description.references Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat Commun. 2019;10:2387 https://doi.org/10.1038/s41467-019-10335-5. es_ES
dc.description.references T. Tchkonia, J. L. Kirkland, JAMA , Aging, cell senescence, and chronic disease, (2018), 1319. https://doi.org/10.1001/jama.2018.12440. es_ES
dc.description.references D. S. Cho, J. D. Doles, Skeletal muscle progenitor cell heterogeneity, Adv. Exp. Med. Biol. (2019)179–193. https://doi.org/10.1007/978-3-030-24108-7_9. es_ES
dc.description.references K. Kounakis, N. Tavernarakis, The cytoskeleton as a modulator of aging and neurodegeneration. Adv Exp Med Biol. (2019), 227–245. https://doi.org/10.1007/978-3-030-25650-0_12. es_ES
dc.description.references Forsberg A, Johnson W, Logie RH. Aging and feature-binding in visual working memory: the role of verbal rehearsal. Psychol Aging. 2019. https://doi.org/10.1037/pag0000391. es_ES
dc.description.references B. Pan, H. Li, Y. Wang, M. Sun, H. Cai, J. Wang, Physical activity and the risk of frailty among community-dwelling healthy older adults. Medicine (Baltimore). (2019),, e16955. https://doi.org/10.1097/md.0000000000016955. es_ES
dc.description.references M. Ogrodnik, H. Salmonowicz, V. N. Gladyshev, Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells., Aging Cell (2019) e12841. https://doi.org/10.1111/acel.12841. es_ES
dc.description.references Bu H, Wedel S, Cavinato M, Jansen-Dürr P. MicroRNA regulation of oxidative stress-induced cellular senescence. Oxidative Med Cell Longev. 2017:1–17. https://doi.org/10.1155/2017/2398696. es_ES
dc.description.references H. Song, M. Wei, N. Zhang, H. Li, X. Tan, Y. Zhang, W. Zheng, Enhanced permeability of blood–brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle, Int. J. Nanomedicine (2018) 1869–1879. https://doi.org/10.2147/ijn.s161237. es_ES
dc.description.references A. Alexander, M. Agrawal, A. Uddin, S. Siddique, A. M. Shehata, M. A. Shaker, S. Ata Ur Rahman, M. I. M. Abdul, M. A. Shaker, Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine (2019) 5895–5909. https://doi.org/10.2147/ijn.s210876 es_ES
dc.description.references Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res. 2017;120:68–87. https://doi.org/10.1016/j.phrs.2017.03.020. es_ES
dc.description.references Y. Xiao, D. Xu, H. Song, F. Shu, P. Wei, X. Yang, C. Zhong, X. Wang, W. E. Muller, Y. Zheng, et al., Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int. J. Nanomedicine (2019) 5989–6000. https://doi.org/10.2147/ijn.s196794. es_ES
dc.description.references Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48:43–60. https://doi.org/10.1007/s40005-017-0370-4. es_ES
dc.description.references R.-M. F, S. N, A. N, J. N. Gold-Curcumin Nanostructure in Photothermal Therapy on Breast Cancer Cell Line: 650 and 808 nm Diode Lasers as Light Sources.Biomed. Phys. Eng. (2019). https://doi.org/10.31661/jbpe.v0i0.906. es_ES
dc.description.references Dhas N, Ige P, Kudarha R. Design, optimization and in-vitro study of folic acid conjugated-chitosan functionalized plga nanoparticle for delivery of bicalutamide in prostate cancer. Power Technol. 2015;283:234–45. https://doi.org/10.1016/j.powtec.2015.04.053. es_ES
dc.description.references Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–51. https://doi.org/10.1016/j.actbio.2015.06.027. es_ES
dc.description.references M. Ben Haddada, D. Koshel, Z. Yang, W. Fu, J. Spadavecchia, S. Pesnel, A.-L. Morel, Proof of concept of plasmonic thermal destruction of surface cancers by gold nanoparticles obtained by green chemistry. Colloids Surf. B. Biointerfaces (2019) 110496. https://doi.org/10.1016/j.colsurfb.2019.110496 es_ES
dc.description.references R. Maity, M. Chatterjee, A. Banerjee, A. Das, R. Mishra, S. Mazumder, N. Chanda, Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mater. Sci. Eng. C. Mater. Biol. Appl. (2019) 109909. https://doi.org/10.1016/j.msec.2019.109909 es_ES
dc.description.references L.-X. Gai, W.-Q. Wang, X. Wu, X.-J. Su, F.-C. Yang, J. NIR absorbing reduced graphene oxide for photothermal radiotherapy for treatment of esophageal cancer. Photochem. Photobiol. B. (2019) 188–193. https://doi.org/10.1016/j.jphotobiol.2019.03.014. es_ES
dc.description.references Zheng Z, Huang L, Yan L, Yuan F, Wang L, Wang K, et al. Polyaniline functionalized Graphene Nanoelectrodes for the regeneration of PC12 cells via electrical stimulation. Int J Mol Sci. 2019;2013. https://doi.org/10.3390/ijms20082013. es_ES
dc.description.references Fan C, Kong F, Shetti D, Zhang B, Yang Y, Wei K. Resveratrol loaded oxidized mesoporous carbon nanoparticles: a promising tool to treat triple negative breast cancer. Biochem Biophys Res Commun. 2019. https://doi.org/10.1016/j.bbrc.2019.09.016. es_ES
dc.description.references R. Kamakura, M. Kovalainen, J. Riikonen, T. Nissinen, G. Shere Raza, J. Walkowiak, V.-P. Lehto, K.-H. Herzig. Inorganic mesoporous particles for controlled α-linolenic acid delivery to stimulate GLP-1 secretion in vitro, Eur. J. Pharm. Biopharm. (2019) 132–138, https://doi.org/10.1016/j.ejpb.2019.09.009. es_ES
dc.description.references Y.-C. Lin, C.-F. Lin, A. Alalaiwe, P.-W. Wang, Y.-P. Fang, J.-Y. Fang, UV filter entrapment in mesoporous silica hydrogel for skin protection against UVA with minimization of percutaneous absorption. Eur. J. Pharm. Sci. (2018) 185–194. https://doi.org/10.1016/j.ejps.2018.07.013. es_ES
dc.description.references Y. He, S. Liang, M. Long, H. XuMesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C, 78 (2017), pp. 12–17. es_ES
dc.description.references Portilho FL, Helal Neto E, Cabezas SS, Pinto SR, Dos Santos SN, Pozzo L, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Nanomedicine, And Biotechnology: Artificial Cells; 2018. p. 1080–7. https://doi.org/10.1080/21691401.2018.1443941. es_ES
dc.description.references de Menezes FD, Dos Reis SRR, Pinto SR, Portilho FL, do Vale Chaves E Mello F, Helal-Neto E, da Silva de Barros AO et al. Graphene quantum dots unraveling: green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity Materials Science and Engineering. (2019) 102, p.405–414. https://doi.org/10.1016/j.msec.2019.04.058. es_ES
dc.description.references Saez, V, De Menezes FD, Dos Santos CC, Alencar, LMR, Ricci-Junior E, Mansur CRE, Santos-Oliveira R. Graphene quantum dots nanoparticles changed the rheological properties of hydrophilic gels (carbopol). Journal of Molecular Liquids. (2019) 110949. https://doi.org/10.1016/j.molliq.2019.110949 es_ES
dc.description.references Dos Santos, SN, Dos Reis SR, Pires LP, Helal-Neto E, Sancenon F, Barja-Fidalgo, TC, De Mattos RM et al.. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous And Mesoporous Materials. (2017) 181–189. https://doi.org/10.1016/j.micromeso.2017.06.005. es_ES
dc.description.references Rosa TG, Dos Santos SN, de Jesus Andreoli Pinto T, Ghisleni DDM, Barja-Fidalgo TC, Ricci-Junior E, Al-Qahtani M, Kozempel J, Bernardes ES, Santos-Oliveira R. Microradiopharmaceutical for Metastatic Melanoma. Pharmaceutical Research. (2017). 2922–2930. https://doi.org/10.1007/s11095-017-2275-3. es_ES
dc.description.references Fatemika H, Seyedabadi M, Karimi Z, Tanha K, Assadi M, Tanha K. Comparison of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal models of acute kidney injury. Mol Cell Biochem. 2017;434(1–2):163–9. https://doi.org/10.1007/s11010-017-3046-5 es_ES
dc.description.references Rodrigues VST, Moura EG, Bernardino DN, Carvalho JC, Soares PN, Peixoto TC, et al. Supplementation of suckling rats with cow's milk induces hyperphagia and higher visceral adiposity in females at adulthood, but not in males. J Nutr Biochem. 2018;55:89–103. https://doi.org/10.1016/j.jnutbio.2017.12.001. es_ES
dc.description.references SJ Jackson, N Andrews , D Ball , I Bellantuono, J. Gray, L. Hachoumi, A. Holmes, J. Latcham, A. Petrie, P. Potter, A. Rice, A. Ritchie, K. Chapman. Does age matter? The impact of rodent age on study outcomes. Lab Anim. (2017) Apr;51(2):160–169. es_ES
dc.description.references E. Lindsay, Pappas, TR. Nagy. The translation of age-related body composition findings from rodents to humans. Eur J Clin Nutr. (2019) Feb;73(2):172–178. es_ES
dc.description.references Adams DJ. The valley of death in anticancer drug development: a reassessment. Trends Pharmacol Sci. 2012;33:173–80. es_ES
dc.description.references A. Talevi, CL Bellera, M Di Ianni, M Gantner, LE Bruno- Blanch and EA Castro. CNS drug development – lost in translation? Mini Rev Med Chem. (2012) Sep 1;12(10):959–70. es_ES
dc.description.references Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. es_ES
dc.description.references Landis SC, Amara SG, Asadullah K. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490:187. es_ES
dc.description.references Koff RS, Garvey AJ, Burney SW, Bell B. Absence of an age effect on sulfobromophtalein retention in healthy men. Gastroenterology. 1973;65:300–2. es_ES
dc.description.references Kampmann JP, Sinding J, Moller-Jorgensen I. Effect of age on liver function. Geriatrics. 1975;30:91–5. es_ES
dc.description.references Fu A. NK Sreekumaran. Age effect on fibrinogen and albumin synthesis in humans. Am J Phys. 1998;275. es_ES
dc.description.references Mori K, Blackshear PE, Lobenhofer EK. Hepatic transcript levels for genes coding for enzymes associated with xenobiotic metabolism are altered with age. Toxicol Pathol. 2007;35:242–51. es_ES
dc.description.references Pibiri M, Sulas P, Leoni VP. Global gene expression profile of normal and regenerating liver in young and old mice. Age (Dordr). 2015;37:9796. es_ES
dc.description.references Castleden CM, George CF. The effect of ageing on the hepatic clearance of propranolol. Br J Clin Pharmacol. 1979;7:49–54. es_ES
dc.description.references Greenblatt DJ, Harmatz JS, Shapiro L, Engelhardt N, Gouthro TA, Shader RI. Sensitivity to triazolam in the elderly. N Engl J Med. 1991;324:1691–8. es_ES
dc.description.references Anantharaju A, Feller A, Chedid A. Aging liver. A review Gerontology. 2002;48:343–53. es_ES
dc.description.references Robertson DR, Waller DG, Renwick AG, George CF. Age-related changes in the pharmacokinetics and pharmacodynamics of nifedipine. Br J Clin Pharmacol. 1988;25:297–305. es_ES
dc.description.references Castleden CM, Kaye CM, Parsons RL. The effect of age on plasma levels of propranolol and practolol in man. Br J Clin Pharmacol. 1975;2:303–6. es_ES
dc.description.references Davies RO, Gomez HJ, Irvin JD, Walker JF. An overview of the clinical pharmacology of enalapril. Br J Clin Pharmacol. 1984;18(Suppl 2):215S–29S. es_ES
dc.description.references Todd PA, Fitton A. Perindopril A review of its pharmacological properties and therapeutic use. Drugs. 1991;42:90–114. es_ES
dc.description.references Jr Fulop T, Worum I, Csongor J, Foris G, Leovey A. Body composition in elderly people. I. Determination of body composition by multiisotope method and the elimination kinetics of these isotopes in healthy elderly subjects. Gerontology. 1985;31:6–14. es_ES
dc.description.references Redolfi A, Borgogelli E, Lodola E. Blood level of cimetidine in relation to age. Eur J Clin Pharmacol. 1979;15:257–61. es_ES
dc.description.references Zeeh J, Platt D. The aging liver: structural and functional changes and their consequences for drug treatment in old age. Gerontology. 2002;48(3):121–7. es_ES
dc.description.references Tateishi T, Fujimura A, Shiga T, Ohashi K, Ebihara A. Influence of aging on the oxidative and conjugative metabolism of propranolol. Int J Clin Pharmacol Res. 1995;15(3):95–101. es_ES
dc.description.references Anantharaju A, Feller A, Chedid A. Aging liver. A review. Gerontology. 2002;48(6):343–53. es_ES
dc.description.references Sun X, Yan X, Jacobson O, Sun W, Wang Z, Tong X, et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics. 2017;7(2):319. es_ES
dc.description.references Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nature Materials. 2016;15:1212. es_ES
dc.description.references SA MacParland, KM Tsoi, B Ouyang, XZ Ma, J Manuel, A Fawaz, MA Ostrowski, BA Alman, A Zilman, WC Chan, ID McGilvray, Phenotype determines nanoparticle uptake by human macrophages from liver and blood ACS Nano, (2017) 28;11(3), 2428. es_ES
dc.description.references Dreyfuss D, Shader RI, Harmatz JS, Greenblatt DJ. Kinetics and dynamics of single doses of oxazepam in the elderly: implications of absorption rate. J Clin Psychiatry. 1986;47:511–4. es_ES
dc.description.references Divoll M, Ameer B, Abernethy DR, Greenblatt DJ. Age does not alter acetaminophen absorption. J Am Geriatr Soc. 1982;30:240–4. es_ES
dc.description.references Gainsborough N, Maskrey VL, Nelson ML, Keating J, Sherwood RA, Jackson SHD, et al. The association of age with gastric emptying. Age Ageing. 1993;22:37–40. es_ES
dc.description.references Wynne H. Drug metabolism and ageing. J Br Menopause Soc. 2005;11(2):51–6. es_ES
dc.description.references Blechman MB, Gelb AM. Aging and gastrointestinal physiology. Clin Geriatr Med. 1999;15:429–38. es_ES
dc.description.references Klawans HL. Emerging strategies in Parkinson’s disease. Neurology. 1990;40(Suppl 3):1–76. es_ES
dc.description.references Rostami-Hodjegan A, Kroemer HK, Tucker GT. In vivo indices of enzyme activity. The effect of renal impairment on the assessment of CYP2D6 activity. Pharmacogenetics. 1999;9:277–86. es_ES
dc.description.references Yuan R, Venitz J. Effect of chronic renal failure on the disposition of highly hepatically metabolized drugs. Int J Clin Pharmacol Ther. 2000;38:245–53. es_ES
dc.description.references Pichette V, Leblond FA. Drug metabolism in chronic renal failure. Curr Drug Metab. 2003;4:91–103. es_ES
dc.description.references Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 1989;9:297–301. es_ES
dc.description.references de Jesus FC, Helal-Neto E, Portilho FL, Rocha Pinto S, Sancenón F, Martínez-Máñez R, et al. Effect of obesity on biodistribution of nanoparticles. J Control Release. 2018 Jul 10;281:11–8. https://doi.org/10.1016/j.jconrel.2018.05.003. es_ES
dc.description.references De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ. Geertsma RE particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008 Apr;29(12):1912–9. es_ES
dc.description.references Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small. 2007 Feb;3(2):333–41. es_ES
dc.description.references Mohamed Anwar K Abdelhalim and Bashir M Jarrar Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles. GNP Lipids Health Dis. 2011; 10: 163. https://doi.org/10.1186/1476-511X-10-163 es_ES
dc.description.references AA Mangoni and SH Jackson. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. (2004) Jan;57(1):6–14. es_ES
dc.description.references S. Shaojun and K Ulrich. Age-Related Changes in Pharmacokinetics. Current Drug Metabolism, Volume 12, Number 7 (2011) pp. 601–610(10). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem