- -

Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diaz de Otalora-Aguirre, Xabier es_ES
dc.contributor.author Fragoni. F es_ES
dc.contributor.author Del Prado, A. es_ES
dc.contributor.author Estellés, F. es_ES
dc.contributor.author Wilfart, A es_ES
dc.contributor.author Krol, D es_ES
dc.contributor.author Balaine, L es_ES
dc.contributor.author Anestis, V es_ES
dc.contributor.author Amon, B. es_ES
dc.date.accessioned 2023-06-12T18:01:20Z
dc.date.available 2023-06-12T18:01:20Z
dc.date.issued 2022 es_ES
dc.identifier.issn 1774-0746 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194097
dc.description.abstract [EN] European dairy production faces significant economic, environmental, and social sustainability challenges. Given the great diversity of dairy cattle production systems in Europe, region-specific concepts to improve environmental and socioeconomic sustainability are needed. Regionally integrated dairy cattle-crop systems emerge as a more resilient and sustainable alternative to highly specialized farming systems. Identifying different dairy cattle production typologies and their potential interactions with fodder crop production is presented as a step in transitioning to optimized agricultural systems. Currently existing typologies of integrated systems are often insufficient when characterizing structural, socioeconomic, and environmental components of farms. We fill this gap in the literature by identifying, describing, and comparing representative dairy cattle production system typologies and their interrelation with regional fodder crop production at the European regional scale. This is a necessary step to assess the scope for adapted mitigation and sustainability measures in the future. For this purpose, a multivariate statistical approach is applied. We show how different land-use practices, farm structure characteristics, socio-economic attributes, and emission intensities condition dairy production. Furthermore, the diversity of regional fodder crop production systems is demonstrated by analyzing their distribution in Europe. Together with identified typologies, varying degrees of regional specialization in milk production allow for identifying future strategies associated with the application of integrated systems in key European dairy regions. This study contributes to a better understanding of the existing milk production diversity in Europe and their relationship with regional fodder crop production. In addition, we discuss the benefits of integrated systems as a clear, viable, and resilient alternative to ongoing livestock intensification in the European context. Identifying interactions between components of integrated systems will facilitate decision-making, the design and implementation of measures to mitigate climate change, and the promotion of positive socio-economic and environmental interactions. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Agronomy for Sustainable Development es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dairy cattle es_ES
dc.subject Fodder crops es_ES
dc.subject Integrated systems es_ES
dc.subject Sustainability and typologies es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13593-022-00830-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Diaz De Otalora-Aguirre, X.; Fragoni. F; Del Prado, A.; Estellés, F.; Wilfart, A.; Krol, D.; Balaine, L.... (2022). Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe. Agronomy for Sustainable Development. (42):1-16. https://doi.org/10.1007/s13593-022-00830-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13593-022-00830-3 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 42 es_ES
dc.relation.pasarela S\471476 es_ES
dc.description.references Acosta-Alba I, Lopéz-Ridaura S, Van Der Werf HMG et al (2012) Exploring sustainable farming scenarios at a regional scale: an application to dairy farms in Brittany. J Clean Prod 28:160–167. https://doi.org/10.1016/j.jclepro.2011.11.061 es_ES
dc.description.references Alvarez S, Timler CJ, Michalscheck M, Paas W, Descheemaeker K, Tittonell P, Andersson JA, Groot JCJ (2018) Capturing farm diversity with hypothesis-based typologies: an innovative methodological framework for farming system typology development. PLoS ONE 13:1–24. https://doi.org/10.1371/journal.pone.0194757 es_ES
dc.description.references Amon B, Çinar G, Anderl M, Dragoni F, Kleinberger-Pierer M, Hörtenhuber S (2021) Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines. Environ Res Lett 16:075001. https://doi.org/10.1088/1748-9326/ac0848 es_ES
dc.description.references Animal Task Force (2021) A strategic research and innovation agenda for a sustainable livestock sector in Europe. Brussels es_ES
dc.description.references Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, et al. (2021). Climate Change 2021: The physical science basis. Contribution of working group14 I to the Sixth Assessment Report of the Intergovernmental panel on climate change. Technical Summary. es_ES
dc.description.references Arulnathan V, Heidari MD, Doyon M, Li E, Pelletier N (2020) Farm-level decision support tools: a review of methodological choices and their consistency with principles of sustainability assessment. J Clean Prod 256:120410. https://doi.org/10.1016/j.jclepro.2020.120410 es_ES
dc.description.references Balaine L, Dillon EJ, Läpple D, Lynch J (2020) Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms. Land use policy 92:104437. https://doi.org/10.1016/j.landusepol.2019.104437 es_ES
dc.description.references Bánkuti FI, Prizon RC, Damasceno JC, de Brito MM, Pozza MSS, Lima PGL (2020) Farmers’ actions toward sustainability: a typology of dairy farms according to sustainability indicators. Animal 14:s417–s423. https://doi.org/10.1017/S1751731120000750 es_ES
dc.description.references Bartkowski B, Schüßler C, Müller B (2022) Typologies of European farmers: approaches, methods and research gaps. Reg Environ Chang 22:1–13. https://doi.org/10.1007/s10113-022-01899-y es_ES
dc.description.references Bartlett M (1951) The effect of standardization on a Chi-square approximation in factor analysis. Biometrika 38:337–344 es_ES
dc.description.references Bava L, Sandrucci A, Zucali M, Guerci M, Tamburini A (2014) How can farming intensification affect the environmental impact of milk production? J Dairy Sci 97:4579–4593. https://doi.org/10.3168/jds.2013-7530 es_ES
dc.description.references Benjamin Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300 es_ES
dc.description.references Boeraeve F, Dendoncker N, Cornélis JT, Degrune F, Dufrêne M (2020) Contribution of agroecological farming systems to the delivery of ecosystem services. J Environ Manage 260:109576. https://doi.org/10.1016/j.jenvman.2019.109576 es_ES
dc.description.references Bonaudo T, Bendahan AB, Sabatier R, Ryschawy J, Bellon S, Leger F, Magda D, Tichit M (2014) Agroecological principles for the redesign of integrated crop-livestock systems. Eur J Agron 57:43–51. https://doi.org/10.1016/j.eja.2013.09.010 es_ES
dc.description.references Bosch-Serra AD, Yagüe MR, Valdez AS, Domingo-Olivé F (2020) Dairy cattle slurry fertilization management in an intensive Mediterranean agricultural system to sustain soil quality while enhancing rapeseed nutritional value. J Environ Manage 273:111092. https://doi.org/10.1016/j.jenvman.2020.111092 es_ES
dc.description.references Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM, Stevenson JS (2018) Invited review: learning from the future—a vision for dairy farms and cows in 2067. J Dairy Sci 101:3722–3741. https://doi.org/10.3168/jds.2017-14025 es_ES
dc.description.references Buller LS, Bergier I, Ortega E, Moraes A, Bayma-Silva G, Zanetti MR (2015) Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agric Syst 137:206–219. https://doi.org/10.1016/j.agsy.2014.11.004 es_ES
dc.description.references Catarino R, Therond O, Berthomier J, Miara M, Mérot E, Misslin R, Vanhove P, Villerd J, Angevin F (2021) Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. Agric Syst 189:103066. https://doi.org/10.1016/j.agsy.2021.103066 es_ES
dc.description.references Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) Nbclust: an R package for determining the relevant number of clusters in a data set. J Stat Softw 61:1–36. https://doi.org/10.18637/jss.v061.i06 es_ES
dc.description.references Clay N, Garnett T, Lorimer J (2020) Dairy intensification: drivers, impacts and alternatives. Ambio 49:35–48. https://doi.org/10.1007/s13280-019-01177-y es_ES
dc.description.references Curien M, Issanchou A, Degan F, Manneville V, Saby NPA, Dupraz P (2021) Spreading herbivore manure in livestock farms increases soil carbon content, while granivore manure decreases it. Agron Sustain Dev 41:30. https://doi.org/10.1007/s13593-021-00682-3 es_ES
dc.description.references Darnhofer I, Bellon S, Dedieu B, Milestad R (2009) Adaptiveness to enhance the sustainability of farming systems. Sustain Agric 2:45–58. https://doi.org/10.1007/978-94-007-0394-0_4 es_ES
dc.description.references De Souza Filho W, de A Nunes PA, Barro RS et al (2019) Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. J Clean Prod 213:968–975. https://doi.org/10.1016/j.jclepro.2018.12.245 es_ES
dc.description.references del Prado A, Manzano P, Pardo G (2021) The role of the European small ruminant dairy sector in stabilising global temperatures: Lessons from GWP∗ warming-equivalent emission metrics. J Dairy Res 88:8–15. https://doi.org/10.1017/S0022029921000157 es_ES
dc.description.references Dentler J, Kiefer L, Hummler T, Bahrs E, Elsaesser M (2020) The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol Sustain Food Syst 44:1089–1110. https://doi.org/10.1080/21683565.2020.1712572 es_ES
dc.description.references Díaz de Otálora X, Epelde L, Arranz J, Garbisu C, Ruiz R, Mandaluniz N (2021) Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol Indic 125:107484. https://doi.org/10.1016/j.ecolind.2021.107484 es_ES
dc.description.references Ditzler L, van Apeldoorn DF, Pellegrini F, Antichi D, Bàrberi P, Rossing WAH (2021) Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron Sustain Dev 41:26. https://doi.org/10.1007/s13593-021-00678-z es_ES
dc.description.references Dos Reis JC, Rodrigues GS, de Barros I et al (2021) Integrated crop-livestock systems: a sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J Clean Prod 283:124580. https://doi.org/10.1016/j.jclepro.2020.124580 es_ES
dc.description.references Dumont B, Ryschawy J, Duru M, Benoit M, Chatellier V, Delaby L, Donnars C, Dupraz P, Lemauviel-Lavenant S, Méda B, Vollet D, Sabatier R (2019) Review: associations among goods, impacts and ecosystem services provided by livestock farming. Animal 13:1773–1784. https://doi.org/10.1017/S1751731118002586 es_ES
dc.description.references Duru M, Therond O (2015) Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization? Reg Environ Chang 15:1651–1665. https://doi.org/10.1007/s10113-014-0722-9 es_ES
dc.description.references Duval J, Cournut S, Hostiou N (2021) Livestock farmers’ working conditions in agroecological farming systems. A review. Agron Sustain Dev 41:22. https://doi.org/10.1007/s13593-021-00679-y es_ES
dc.description.references EIP-AGRI Focus Group (2017) Mixed farming systems: livestock/cash crops. Final Report, available at https://ec.europa.eu/eip/agriculture/sites/default/files/fg16_mixed_farming_finalreport_2017_en.pdf. Accessed in Dec 2021 es_ES
dc.description.references Ertl P, Klocker H, Hörtenhuber S, Knaus W, Zollitsch W (2015) The net contribution of dairy production to human food supply: the case of austrian dairy farms. Agric Syst 137:119–125. https://doi.org/10.1016/j.agsy.2015.04.004 es_ES
dc.description.references European European Commission (2020) EU + UK Feed protein balance sheet. available at https://agriculture.ec.europa.eu/data-and-analysis/markets/overviews/balance-sheetssector/oilseeds-and-protein-crops_en. Accesses in Dec 2021 es_ES
dc.description.references European Commission (2020) European Commission (2020) Farm to fork strategy: for a fair, healthy and environmentally-friendly food systems, available at https://ec.europa.eu/food/farm2fork_en. Accessed in Jan 2022 es_ES
dc.description.references European Environmental Agency (2022) European environment information and observation network: central data repository (CDR). https://cdr.eionet.europa.eu/ es_ES
dc.description.references EUROSTAT (2013a) Farm strucutre survey. https://ec.europa.eu/eurostat/web/microdata/farm-structure-survey es_ES
dc.description.references EUROSTAT (2013b) Statistics explained: fodder area. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Fodder_area es_ES
dc.description.references EUROSTAT (2019) Agri-environmental indicator—specialisation. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_specialisation#Data_sources es_ES
dc.description.references EUROSTAT (2020) Statistical regions in the European Union and partner countries, available at https://ec.europa.eu/eurostat/documents/3859598/10967554/KS-GQ-20-092-EN-N.pdf/9d57ae79-3ee7-3c14-da3e-34726da385cf. Accessed in Dec 2021 es_ES
dc.description.references FAO (1994) Definition and classification of commodities-Fodder crops. https://www.fao.org/ES/faodef/fdef11e.htm es_ES
dc.description.references Feil AA, Schreiber D, Haetinger C, Haberkamp ÂM, Kist JI, Rempel C, Maehler AE, Gomes MC, da Silva GR (2020) Sustainability in the dairy industry: a systematic literature review. Environ Sci Pollut Res 27:33527–33542. https://doi.org/10.1007/s11356-020-09316-9 es_ES
dc.description.references Garrett RD, Ryschawy J, Bell LW, Cortner O, Ferreira J, Garik AVN, Gil JDB, Klerkx L, Moraine M, Peterson CA, dos Reis JC, Valentim JF (2020) Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol Soc 25:24. https://doi.org/10.5751/ES-11412-250124 es_ES
dc.description.references Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change throught livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome es_ES
dc.description.references Gonzalez-Mejia A, Styles D, Wilson P, Gibbons J (2018) Metrics and methods for characterizing dairy farm intensification using farm survey data. PLoS ONE 13:1–18. https://doi.org/10.1371/journal.pone.0195286 es_ES
dc.description.references Guarín A, Rivera M, Pinto-Correia T, Guiomar N, Šūmane S, Moreno-Pérez OM (2020) A new typology of small farms in Europe. Glob Food Sec 26:100389. https://doi.org/10.1016/j.gfs.2020.100389 es_ES
dc.description.references Guerci M, Bava L, Zucali M, Sandrucci A, Penati C, Tamburini A (2013) Effect of farming strategies on environmental impact of intensive dairy farms in Italy. J Dairy Res 80:300–308. https://doi.org/10.1017/S0022029913000277 es_ES
dc.description.references Guiomar N, Godinho S, Pinto-Correia T, Almeida M, Bartolini F, Bezák P, Biró M, Bjørkhaug H, Bojnec Š, Brunori G, Corazzin M, Czekaj M, Davidova S, Kania J, Kristensen S, Marraccini E, Molnár Z, Niedermayr J, O’Rourke E et al (2018) Typology and distribution of small farms in Europe: Towards a better picture. Land Use Policy 75:784–798. https://doi.org/10.1016/j.landusepol.2018.04.012 es_ES
dc.description.references Hayden MT, Mattimoe R, Jack L (2021) Sensemaking and the influencing factors on farmer decision-making. J Rural Stud 84:31–44. https://doi.org/10.1016/j.jrurstud.2021.03.007 es_ES
dc.description.references Helfenstein J, Diogo V, Bürgi M, Verburg PH, Schüpbach B, Szerencsits E, Mohr F, Siegrist M, Swart R, Herzog F (2022) An approach for comparing agricultural development to societal visions. Agron Sustain Dev 42:5. https://doi.org/10.1007/s13593-021-00739-3 es_ES
dc.description.references Horn M, Steinwidder A, Pfister R, Gasteiner J, Vestergaard M, Larsen T, Zollitsch W (2014) Do different cow types respond differently to a reduction of concentrate supplementation in an Alpine low-input dairy system? Livest Sci 170:72–83. https://doi.org/10.1016/j.livsci.2014.10.006 es_ES
dc.description.references Jayasundara S, Worden D, Weersink A, Wright T, VanderZaag A, Gordon R, Wagner-Riddle C (2019) Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems. J Clean Prod 229:1018–1028. https://doi.org/10.1016/j.jclepro.2019.04.013 es_ES
dc.description.references Joint Programming Initiative on Agriculture FS and CC (2020) FACCE-JPI Strategic Research Agenda 2020, available at https://www.faccejpi.net/en/Display-on-pages/show/FACCE-JPI-Strategic-Research-Agenda-2020.htm. Accessed on Jan 2022 es_ES
dc.description.references Jouan J, Ridier A, Carof M (2020) SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability. Ecol Econ 175:106688. https://doi.org/10.1016/j.ecolecon.2020.106688 es_ES
dc.description.references Karlsson JO, Röös E (2019) Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land use policy 85:63–72. https://doi.org/10.1016/j.landusepol.2019.03.035 es_ES
dc.description.references Karlsson JO, Parodi A, van Zanten HHE, Hansson PA, Röös E (2021) Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat Food 2:38–46. https://doi.org/10.1038/s43016-020-00203-7 es_ES
dc.description.references Kassambara A, Mundt F (2020) Factoextra: extract and visualize the results of multivariate data analyses. R package version, 1(5):337–354 es_ES
dc.description.references Kihoro EM, Schoneveld GC, Crane TA (2021) Pathways toward inclusive low-emission dairy development in Tanzania: Producer heterogeneity and implications for intervention design. Agric Syst 190:103073. https://doi.org/10.1016/j.agsy.2021.103073 es_ES
dc.description.references Köchy M, Bannink A, Banse M, et al (2015) MACSUR Phase 1 Final Administrative Report: Public release. FACCE MACSUR Reports, 6:3–5. es_ES
dc.description.references Leiber F, Schenk IK, Maeschli A, Ivemeyer S, Zeitz JO, Moakes S, Klocke P, Staehli P, Notz C, Walkenhorst M (2017) Implications of feed concentrate reduction in organic grassland-based dairy systems: a long-term on-farm study. Animal 11:1–10. https://doi.org/10.1017/S1751731117000830 es_ES
dc.description.references Lesschen JP, Elbersen B, Hazeu G et al (2016) Defining and classifying grasslands in Europe. Wageningen University and Research: Wageningen, The Netherlands es_ES
dc.description.references Madry W, Mena Y, Roszkowska-Madra B et al (2013) An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Spanish J Agric Res 11:316–326. https://doi.org/10.5424/sjar/2013112-3295 es_ES
dc.description.references Markova-Nenova N, Wätzold F (2018) Fair to the cow or fair to the farmer? The preferences of conventional milk buyers for ethical attributes of milk. Land Use Policy 79:223–239. https://doi.org/10.1016/j.landusepol.2018.07.045 es_ES
dc.description.references Martin G, Moraine M, Ryschawy J, Magne MA, Asai M, Sarthou JP, Duru M, Therond O (2016) Crop–livestock integration beyond the farm level: a review. Agron Sustain Dev 36:53. https://doi.org/10.1007/s13593-016-0390-x es_ES
dc.description.references Mehrabi Z, Gill M, van Wijk M et al (2020) Livestock policy for sustainable development. Nat Food 1:160–165. https://doi.org/10.1038/s43016-020-0042-9 es_ES
dc.description.references Munidasa S, Eckard R, Sun X, Cullen B, McGill D, Chen D, Cheng L (2021) Challenges and opportunities for quantifying greenhouse gas emissions through dairy cattle research in developing countries. J Dairy Res 88:73–77. https://doi.org/10.1017/S0022029921000182 es_ES
dc.description.references Murphy B, Crosson P, Kelly AK, Prendiville R (2017) An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems. Agric Syst 154:124–132. https://doi.org/10.1016/j.agsy.2017.03.007 es_ES
dc.description.references Muscat A, de Olde EM, Ripoll-Bosch R, van Zanten HHE, Metze TAP, Termeer CJAM, van Ittersum MK, de Boer IJM (2021) Principles, drivers and opportunities of a circular bioeconomy. Nat Food 2:561–566. https://doi.org/10.1038/s43016-021-00340-7 es_ES
dc.description.references Neumann K, Elbersen BS, Verburg PH, Staritsky I, Pérez-Soba M, de Vries W, Rienks WA (2009) Modelling the spatial distribution of livestock in Europe. Landsc Ecol 24:1207–1222. https://doi.org/10.1007/s10980-009-9357-5 es_ES
dc.description.references Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome es_ES
dc.description.references Perrin A, Martin G (2021) Resilience of French organic dairy cattle farms and supply chains to the Covid-19 pandemic. Agric Syst 190:103082. https://doi.org/10.1016/j.agsy.2021.103082 es_ES
dc.description.references Peyraud J, Macleod M (2020) Future of EU Livestock: How to Contribute to a Sustainable Agricultural Sector. Final Report. Directorate-General for Agriculture and Rural Development (European Commission): Brussels es_ES
dc.description.references Peyraud JL, Le Gall A, Lüscher A (2009) Potential food production from forage legume-based-systems in Europe: an overview. Irish J Agric Food Res 48:115–135 es_ES
dc.description.references Poczta W, Średzińska J, Chenczke M (2020) Economic situation of dairy farms in identified clusters of European Union countries. Agriculture 10:92. https://doi.org/10.3390/agriculture10040092 es_ES
dc.description.references Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Science (80- ) 362:908. https://doi.org/10.1126/science.aav0294 es_ES
dc.description.references Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockström J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain 1:441–446. https://doi.org/10.1038/s41893-018-0114-0 es_ES
dc.description.references QGIS Development Team (2021) QGIS Development Team. (2021). QGIS geographic information system. QGIS Association. https://www.qgis.org es_ES
dc.description.references Qi A, Holland RA, Taylor G, Richter GM (2018) Grassland futures in Great Britain—productivity assessment and scenarios for land use change opportunities. Sci Total Environ 634:1108–1118. https://doi.org/10.1016/j.scitotenv.2018.03.395 es_ES
dc.description.references R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org es_ES
dc.description.references Rasmussen LV, Coolsaet B, Martin A, Mertz O, Pascual U, Corbera E, Dawson N, Fisher JA, Franks P, Ryan CM (2018) Social-ecological outcomes of agricultural intensification. Nat Sustain 1:275–282. https://doi.org/10.1038/s41893-018-0070-8 es_ES
dc.description.references Ravetto Enri S, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B (2017) A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric Ecosyst Environ 241:1–10. https://doi.org/10.1016/j.agee.2017.02.030 es_ES
dc.description.references Rea A, Rea W (2016) How many components should be retained from a multivariate time series PCA?. arXiv:1610.03588 es_ES
dc.description.references Reheul D, Vilegher A, Bommelé L, Carlier L (2007) The comparison between temporary and permanent grassland. In Permanent and temporary grassland: plant, environment and economy. Proceedings of the 14th Symposium of the European Grassland Federation, Ghent, Belgium, 3-5 September 2007 (pp. 1–13). Belgian Society for Grassland and Forage Crops. es_ES
dc.description.references Revelle W (2020) psych: Procedures for personality and psychological research es_ES
dc.description.references Robert M, Thomas A, Sekhar M, Badiger S, Ruiz L, Willaume M, Leenhardt D, Bergez JE (2017) Farm typology in the Berambadi Watershed (India): farming systems are determined by farm size and access to groundwater. Water (Switzerland) 9:1–21. https://doi.org/10.3390/w9010051 es_ES
dc.description.references Rotz CA (2018) Modeling greenhouse gas emissions from dairy farms. J Dairy Sci 101:6675–6690. https://doi.org/10.3168/jds.2017-13272 es_ES
dc.description.references Ryschawy J, Choisis N, Choisis JP, Joannon A, Gibon A (2012) Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6:1722–1730. https://doi.org/10.1017/S1751731112000675 es_ES
dc.description.references Salou T, Le Mouël C, van der Werf HMG (2017) Environmental impacts of dairy system intensification: the functional unit matters! J Clean Prod 140:445–454. https://doi.org/10.1016/j.jclepro.2016.05.019 es_ES
dc.description.references San Martin D, Orive M, Iñarra B, García A, Goiri I, Atxaerandio R, Urkiza J, Zufía J (2021) Spent coffee ground as second-generation feedstuff for dairy cattle. Biomass Convers Biorefinery 11:589–599. https://doi.org/10.1007/s13399-020-00610-7 es_ES
dc.description.references Sanchis E, Calvet S, del Prado A, Estellés F (2019) A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosyst Eng 178:176–183. https://doi.org/10.1016/j.biosystemseng.2018.11.017 es_ES
dc.description.references Schils RLM, Bufe C, Rhymer CM et al (2022) Permanent grasslands in Europe: land use change and intensification decrease their multifunctionality. Agric Ecosyst Environ 330:107891. https://doi.org/10.1016/j.agee.2022.107891 es_ES
dc.description.references Schut AGT, Cooledge EC, Moraine M et al (2021) Reintegration of crop-livestock systems In Europe: an overview. Front Agric Sci Eng 8:111–129. https://doi.org/10.15302/J-FASE-2020373 es_ES
dc.description.references Searchinger T, Hanson C, Ranganathan J et al (2014) Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. World Resources Insitute. Washington DC es_ES
dc.description.references Senga Kiessé T, Corson MS, Wilfart A (2022) Analysis of milk production and greenhouse gas emissions as a function of extreme variations in forage production among French dairy farms. J Environ Manage 307:114537. https://doi.org/10.1016/j.jenvman.2022.114537 es_ES
dc.description.references Shadbolt N, Olubode-Awosola F, Rutsito B (2017) Resilience in dairy farm businesses; to bounce without breaking. J Adv Agric 7:1138–1150. https://doi.org/10.24297/jaa.v7i3.6401 es_ES
dc.description.references Sinha A, Basu D, Priyadarshi P, Sharma M (2021) Application of geographic information system and multivariate techniques for the delineation of farm typologies. Natl Acad Sci Lett 45:3–6. https://doi.org/10.1007/s40009-021-01071-w es_ES
dc.description.references Sneessens I, Sauvée L, Randrianasolo-Rakotobe H, Ingrand S (2019) A framework to assess the economic vulnerability of farming systems: application to mixed crop-livestock systems. Agric Syst 176:102658. https://doi.org/10.1016/j.agsy.2019.102658 es_ES
dc.description.references Stark F, González-García E, Navegantes L, Miranda T, Poccard-Chapuis R, Archimède H, Moulin CH (2018) Crop-livestock integration determines the agroecological performance of mixed farming systems in Latino-Caribbean farms. Agron Sustain Dev 38:92. https://doi.org/10.1007/s13593-017-0479-x es_ES
dc.description.references Stavi I, Bel G, Zaady E (2016) Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A revies. Agron Sustain Dev 36:32. https://doi.org/10.1007/s13593-016-0368-8 es_ES
dc.description.references Steinfeld H, Gerber P, Wassenaar TD et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome es_ES
dc.description.references Styles D, Gonzalez-Mejia A, Moorby J, Foskolos A, Gibbons J (2018) Climate mitigation by dairy intensification depends on intensive use of spared grassland. Glob Chang Biol 24:681–693. https://doi.org/10.1111/gcb.13868 es_ES
dc.description.references Tabacco E, Comino L, Borreani G (2018) Production efficiency, costs and environmental impacts of conventional and dynamic forage systems for dairy farms in Italy. Eur J Agron 99:1–12. https://doi.org/10.1016/j.eja.2018.06.004 es_ES
dc.description.references Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM (2011) Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric Ecosyst Environ 141:310–322. https://doi.org/10.1016/j.agee.2011.03.009 es_ES
dc.description.references van den Pol-van Dasselaar A, Hennessy D, Isselstein J (2020) Grazing of dairy cows in Europe-an in-depth analysis based on the perception of grassland experts. Sustain 12:1098. https://doi.org/10.3390/su12031098 es_ES
dc.description.references Wei T, Simko V (2017) Package ‘corrplot’. Statistician 17:e24 es_ES
dc.description.references Westhoek HJ, Rood GA, Van Den Berg M, Janse JH (2011) The Protein Puzzle : the consumption and production of meat , dairy and fish in the European Union. Eur J Food Res Rev 1:123–144 es_ES
dc.description.references Wezel A, Herren BG, Kerr RB, Barrios E, Gonçalves ALR, Sinclair F (2020) Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron Sustain Dev 40:40. https://doi.org/10.1007/s13593-020-00646-z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem