Mostrar el registro sencillo del ítem
dc.contributor.author | Diaz de Otalora-Aguirre, Xabier | es_ES |
dc.contributor.author | Fragoni. F | es_ES |
dc.contributor.author | Del Prado, A. | es_ES |
dc.contributor.author | Estellés, F. | es_ES |
dc.contributor.author | Wilfart, A | es_ES |
dc.contributor.author | Krol, D | es_ES |
dc.contributor.author | Balaine, L | es_ES |
dc.contributor.author | Anestis, V | es_ES |
dc.contributor.author | Amon, B. | es_ES |
dc.date.accessioned | 2023-06-12T18:01:20Z | |
dc.date.available | 2023-06-12T18:01:20Z | |
dc.date.issued | 2022 | es_ES |
dc.identifier.issn | 1774-0746 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194097 | |
dc.description.abstract | [EN] European dairy production faces significant economic, environmental, and social sustainability challenges. Given the great diversity of dairy cattle production systems in Europe, region-specific concepts to improve environmental and socioeconomic sustainability are needed. Regionally integrated dairy cattle-crop systems emerge as a more resilient and sustainable alternative to highly specialized farming systems. Identifying different dairy cattle production typologies and their potential interactions with fodder crop production is presented as a step in transitioning to optimized agricultural systems. Currently existing typologies of integrated systems are often insufficient when characterizing structural, socioeconomic, and environmental components of farms. We fill this gap in the literature by identifying, describing, and comparing representative dairy cattle production system typologies and their interrelation with regional fodder crop production at the European regional scale. This is a necessary step to assess the scope for adapted mitigation and sustainability measures in the future. For this purpose, a multivariate statistical approach is applied. We show how different land-use practices, farm structure characteristics, socio-economic attributes, and emission intensities condition dairy production. Furthermore, the diversity of regional fodder crop production systems is demonstrated by analyzing their distribution in Europe. Together with identified typologies, varying degrees of regional specialization in milk production allow for identifying future strategies associated with the application of integrated systems in key European dairy regions. This study contributes to a better understanding of the existing milk production diversity in Europe and their relationship with regional fodder crop production. In addition, we discuss the benefits of integrated systems as a clear, viable, and resilient alternative to ongoing livestock intensification in the European context. Identifying interactions between components of integrated systems will facilitate decision-making, the design and implementation of measures to mitigate climate change, and the promotion of positive socio-economic and environmental interactions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Agronomy for Sustainable Development | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dairy cattle | es_ES |
dc.subject | Fodder crops | es_ES |
dc.subject | Integrated systems | es_ES |
dc.subject | Sustainability and typologies | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13593-022-00830-3 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Diaz De Otalora-Aguirre, X.; Fragoni. F; Del Prado, A.; Estellés, F.; Wilfart, A.; Krol, D.; Balaine, L.... (2022). Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe. Agronomy for Sustainable Development. (42):1-16. https://doi.org/10.1007/s13593-022-00830-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13593-022-00830-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 42 | es_ES |
dc.relation.pasarela | S\471476 | es_ES |
dc.description.references | Acosta-Alba I, Lopéz-Ridaura S, Van Der Werf HMG et al (2012) Exploring sustainable farming scenarios at a regional scale: an application to dairy farms in Brittany. J Clean Prod 28:160–167. https://doi.org/10.1016/j.jclepro.2011.11.061 | es_ES |
dc.description.references | Alvarez S, Timler CJ, Michalscheck M, Paas W, Descheemaeker K, Tittonell P, Andersson JA, Groot JCJ (2018) Capturing farm diversity with hypothesis-based typologies: an innovative methodological framework for farming system typology development. PLoS ONE 13:1–24. https://doi.org/10.1371/journal.pone.0194757 | es_ES |
dc.description.references | Amon B, Çinar G, Anderl M, Dragoni F, Kleinberger-Pierer M, Hörtenhuber S (2021) Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines. Environ Res Lett 16:075001. https://doi.org/10.1088/1748-9326/ac0848 | es_ES |
dc.description.references | Animal Task Force (2021) A strategic research and innovation agenda for a sustainable livestock sector in Europe. Brussels | es_ES |
dc.description.references | Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, et al. (2021). Climate Change 2021: The physical science basis. Contribution of working group14 I to the Sixth Assessment Report of the Intergovernmental panel on climate change. Technical Summary. | es_ES |
dc.description.references | Arulnathan V, Heidari MD, Doyon M, Li E, Pelletier N (2020) Farm-level decision support tools: a review of methodological choices and their consistency with principles of sustainability assessment. J Clean Prod 256:120410. https://doi.org/10.1016/j.jclepro.2020.120410 | es_ES |
dc.description.references | Balaine L, Dillon EJ, Läpple D, Lynch J (2020) Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms. Land use policy 92:104437. https://doi.org/10.1016/j.landusepol.2019.104437 | es_ES |
dc.description.references | Bánkuti FI, Prizon RC, Damasceno JC, de Brito MM, Pozza MSS, Lima PGL (2020) Farmers’ actions toward sustainability: a typology of dairy farms according to sustainability indicators. Animal 14:s417–s423. https://doi.org/10.1017/S1751731120000750 | es_ES |
dc.description.references | Bartkowski B, Schüßler C, Müller B (2022) Typologies of European farmers: approaches, methods and research gaps. Reg Environ Chang 22:1–13. https://doi.org/10.1007/s10113-022-01899-y | es_ES |
dc.description.references | Bartlett M (1951) The effect of standardization on a Chi-square approximation in factor analysis. Biometrika 38:337–344 | es_ES |
dc.description.references | Bava L, Sandrucci A, Zucali M, Guerci M, Tamburini A (2014) How can farming intensification affect the environmental impact of milk production? J Dairy Sci 97:4579–4593. https://doi.org/10.3168/jds.2013-7530 | es_ES |
dc.description.references | Benjamin Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300 | es_ES |
dc.description.references | Boeraeve F, Dendoncker N, Cornélis JT, Degrune F, Dufrêne M (2020) Contribution of agroecological farming systems to the delivery of ecosystem services. J Environ Manage 260:109576. https://doi.org/10.1016/j.jenvman.2019.109576 | es_ES |
dc.description.references | Bonaudo T, Bendahan AB, Sabatier R, Ryschawy J, Bellon S, Leger F, Magda D, Tichit M (2014) Agroecological principles for the redesign of integrated crop-livestock systems. Eur J Agron 57:43–51. https://doi.org/10.1016/j.eja.2013.09.010 | es_ES |
dc.description.references | Bosch-Serra AD, Yagüe MR, Valdez AS, Domingo-Olivé F (2020) Dairy cattle slurry fertilization management in an intensive Mediterranean agricultural system to sustain soil quality while enhancing rapeseed nutritional value. J Environ Manage 273:111092. https://doi.org/10.1016/j.jenvman.2020.111092 | es_ES |
dc.description.references | Britt JH, Cushman RA, Dechow CD, Dobson H, Humblot P, Hutjens MF, Jones GA, Ruegg PS, Sheldon IM, Stevenson JS (2018) Invited review: learning from the future—a vision for dairy farms and cows in 2067. J Dairy Sci 101:3722–3741. https://doi.org/10.3168/jds.2017-14025 | es_ES |
dc.description.references | Buller LS, Bergier I, Ortega E, Moraes A, Bayma-Silva G, Zanetti MR (2015) Soil improvement and mitigation of greenhouse gas emissions for integrated crop-livestock systems: case study assessment in the Pantanal savanna highland, Brazil. Agric Syst 137:206–219. https://doi.org/10.1016/j.agsy.2014.11.004 | es_ES |
dc.description.references | Catarino R, Therond O, Berthomier J, Miara M, Mérot E, Misslin R, Vanhove P, Villerd J, Angevin F (2021) Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach based on the MAELIA platform. Agric Syst 189:103066. https://doi.org/10.1016/j.agsy.2021.103066 | es_ES |
dc.description.references | Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014) Nbclust: an R package for determining the relevant number of clusters in a data set. J Stat Softw 61:1–36. https://doi.org/10.18637/jss.v061.i06 | es_ES |
dc.description.references | Clay N, Garnett T, Lorimer J (2020) Dairy intensification: drivers, impacts and alternatives. Ambio 49:35–48. https://doi.org/10.1007/s13280-019-01177-y | es_ES |
dc.description.references | Curien M, Issanchou A, Degan F, Manneville V, Saby NPA, Dupraz P (2021) Spreading herbivore manure in livestock farms increases soil carbon content, while granivore manure decreases it. Agron Sustain Dev 41:30. https://doi.org/10.1007/s13593-021-00682-3 | es_ES |
dc.description.references | Darnhofer I, Bellon S, Dedieu B, Milestad R (2009) Adaptiveness to enhance the sustainability of farming systems. Sustain Agric 2:45–58. https://doi.org/10.1007/978-94-007-0394-0_4 | es_ES |
dc.description.references | De Souza Filho W, de A Nunes PA, Barro RS et al (2019) Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. J Clean Prod 213:968–975. https://doi.org/10.1016/j.jclepro.2018.12.245 | es_ES |
dc.description.references | del Prado A, Manzano P, Pardo G (2021) The role of the European small ruminant dairy sector in stabilising global temperatures: Lessons from GWP∗ warming-equivalent emission metrics. J Dairy Res 88:8–15. https://doi.org/10.1017/S0022029921000157 | es_ES |
dc.description.references | Dentler J, Kiefer L, Hummler T, Bahrs E, Elsaesser M (2020) The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol Sustain Food Syst 44:1089–1110. https://doi.org/10.1080/21683565.2020.1712572 | es_ES |
dc.description.references | Díaz de Otálora X, Epelde L, Arranz J, Garbisu C, Ruiz R, Mandaluniz N (2021) Regenerative rotational grazing management of dairy sheep increases springtime grass production and topsoil carbon storage. Ecol Indic 125:107484. https://doi.org/10.1016/j.ecolind.2021.107484 | es_ES |
dc.description.references | Ditzler L, van Apeldoorn DF, Pellegrini F, Antichi D, Bàrberi P, Rossing WAH (2021) Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron Sustain Dev 41:26. https://doi.org/10.1007/s13593-021-00678-z | es_ES |
dc.description.references | Dos Reis JC, Rodrigues GS, de Barros I et al (2021) Integrated crop-livestock systems: a sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J Clean Prod 283:124580. https://doi.org/10.1016/j.jclepro.2020.124580 | es_ES |
dc.description.references | Dumont B, Ryschawy J, Duru M, Benoit M, Chatellier V, Delaby L, Donnars C, Dupraz P, Lemauviel-Lavenant S, Méda B, Vollet D, Sabatier R (2019) Review: associations among goods, impacts and ecosystem services provided by livestock farming. Animal 13:1773–1784. https://doi.org/10.1017/S1751731118002586 | es_ES |
dc.description.references | Duru M, Therond O (2015) Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization? Reg Environ Chang 15:1651–1665. https://doi.org/10.1007/s10113-014-0722-9 | es_ES |
dc.description.references | Duval J, Cournut S, Hostiou N (2021) Livestock farmers’ working conditions in agroecological farming systems. A review. Agron Sustain Dev 41:22. https://doi.org/10.1007/s13593-021-00679-y | es_ES |
dc.description.references | EIP-AGRI Focus Group (2017) Mixed farming systems: livestock/cash crops. Final Report, available at https://ec.europa.eu/eip/agriculture/sites/default/files/fg16_mixed_farming_finalreport_2017_en.pdf. Accessed in Dec 2021 | es_ES |
dc.description.references | Ertl P, Klocker H, Hörtenhuber S, Knaus W, Zollitsch W (2015) The net contribution of dairy production to human food supply: the case of austrian dairy farms. Agric Syst 137:119–125. https://doi.org/10.1016/j.agsy.2015.04.004 | es_ES |
dc.description.references | European European Commission (2020) EU + UK Feed protein balance sheet. available at https://agriculture.ec.europa.eu/data-and-analysis/markets/overviews/balance-sheetssector/oilseeds-and-protein-crops_en. Accesses in Dec 2021 | es_ES |
dc.description.references | European Commission (2020) European Commission (2020) Farm to fork strategy: for a fair, healthy and environmentally-friendly food systems, available at https://ec.europa.eu/food/farm2fork_en. Accessed in Jan 2022 | es_ES |
dc.description.references | European Environmental Agency (2022) European environment information and observation network: central data repository (CDR). https://cdr.eionet.europa.eu/ | es_ES |
dc.description.references | EUROSTAT (2013a) Farm strucutre survey. https://ec.europa.eu/eurostat/web/microdata/farm-structure-survey | es_ES |
dc.description.references | EUROSTAT (2013b) Statistics explained: fodder area. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Fodder_area | es_ES |
dc.description.references | EUROSTAT (2019) Agri-environmental indicator—specialisation. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_specialisation#Data_sources | es_ES |
dc.description.references | EUROSTAT (2020) Statistical regions in the European Union and partner countries, available at https://ec.europa.eu/eurostat/documents/3859598/10967554/KS-GQ-20-092-EN-N.pdf/9d57ae79-3ee7-3c14-da3e-34726da385cf. Accessed in Dec 2021 | es_ES |
dc.description.references | FAO (1994) Definition and classification of commodities-Fodder crops. https://www.fao.org/ES/faodef/fdef11e.htm | es_ES |
dc.description.references | Feil AA, Schreiber D, Haetinger C, Haberkamp ÂM, Kist JI, Rempel C, Maehler AE, Gomes MC, da Silva GR (2020) Sustainability in the dairy industry: a systematic literature review. Environ Sci Pollut Res 27:33527–33542. https://doi.org/10.1007/s11356-020-09316-9 | es_ES |
dc.description.references | Garrett RD, Ryschawy J, Bell LW, Cortner O, Ferreira J, Garik AVN, Gil JDB, Klerkx L, Moraine M, Peterson CA, dos Reis JC, Valentim JF (2020) Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol Soc 25:24. https://doi.org/10.5751/ES-11412-250124 | es_ES |
dc.description.references | Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change throught livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome | es_ES |
dc.description.references | Gonzalez-Mejia A, Styles D, Wilson P, Gibbons J (2018) Metrics and methods for characterizing dairy farm intensification using farm survey data. PLoS ONE 13:1–18. https://doi.org/10.1371/journal.pone.0195286 | es_ES |
dc.description.references | Guarín A, Rivera M, Pinto-Correia T, Guiomar N, Šūmane S, Moreno-Pérez OM (2020) A new typology of small farms in Europe. Glob Food Sec 26:100389. https://doi.org/10.1016/j.gfs.2020.100389 | es_ES |
dc.description.references | Guerci M, Bava L, Zucali M, Sandrucci A, Penati C, Tamburini A (2013) Effect of farming strategies on environmental impact of intensive dairy farms in Italy. J Dairy Res 80:300–308. https://doi.org/10.1017/S0022029913000277 | es_ES |
dc.description.references | Guiomar N, Godinho S, Pinto-Correia T, Almeida M, Bartolini F, Bezák P, Biró M, Bjørkhaug H, Bojnec Š, Brunori G, Corazzin M, Czekaj M, Davidova S, Kania J, Kristensen S, Marraccini E, Molnár Z, Niedermayr J, O’Rourke E et al (2018) Typology and distribution of small farms in Europe: Towards a better picture. Land Use Policy 75:784–798. https://doi.org/10.1016/j.landusepol.2018.04.012 | es_ES |
dc.description.references | Hayden MT, Mattimoe R, Jack L (2021) Sensemaking and the influencing factors on farmer decision-making. J Rural Stud 84:31–44. https://doi.org/10.1016/j.jrurstud.2021.03.007 | es_ES |
dc.description.references | Helfenstein J, Diogo V, Bürgi M, Verburg PH, Schüpbach B, Szerencsits E, Mohr F, Siegrist M, Swart R, Herzog F (2022) An approach for comparing agricultural development to societal visions. Agron Sustain Dev 42:5. https://doi.org/10.1007/s13593-021-00739-3 | es_ES |
dc.description.references | Horn M, Steinwidder A, Pfister R, Gasteiner J, Vestergaard M, Larsen T, Zollitsch W (2014) Do different cow types respond differently to a reduction of concentrate supplementation in an Alpine low-input dairy system? Livest Sci 170:72–83. https://doi.org/10.1016/j.livsci.2014.10.006 | es_ES |
dc.description.references | Jayasundara S, Worden D, Weersink A, Wright T, VanderZaag A, Gordon R, Wagner-Riddle C (2019) Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems. J Clean Prod 229:1018–1028. https://doi.org/10.1016/j.jclepro.2019.04.013 | es_ES |
dc.description.references | Joint Programming Initiative on Agriculture FS and CC (2020) FACCE-JPI Strategic Research Agenda 2020, available at https://www.faccejpi.net/en/Display-on-pages/show/FACCE-JPI-Strategic-Research-Agenda-2020.htm. Accessed on Jan 2022 | es_ES |
dc.description.references | Jouan J, Ridier A, Carof M (2020) SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability. Ecol Econ 175:106688. https://doi.org/10.1016/j.ecolecon.2020.106688 | es_ES |
dc.description.references | Karlsson JO, Röös E (2019) Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land use policy 85:63–72. https://doi.org/10.1016/j.landusepol.2019.03.035 | es_ES |
dc.description.references | Karlsson JO, Parodi A, van Zanten HHE, Hansson PA, Röös E (2021) Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat Food 2:38–46. https://doi.org/10.1038/s43016-020-00203-7 | es_ES |
dc.description.references | Kassambara A, Mundt F (2020) Factoextra: extract and visualize the results of multivariate data analyses. R package version, 1(5):337–354 | es_ES |
dc.description.references | Kihoro EM, Schoneveld GC, Crane TA (2021) Pathways toward inclusive low-emission dairy development in Tanzania: Producer heterogeneity and implications for intervention design. Agric Syst 190:103073. https://doi.org/10.1016/j.agsy.2021.103073 | es_ES |
dc.description.references | Köchy M, Bannink A, Banse M, et al (2015) MACSUR Phase 1 Final Administrative Report: Public release. FACCE MACSUR Reports, 6:3–5. | es_ES |
dc.description.references | Leiber F, Schenk IK, Maeschli A, Ivemeyer S, Zeitz JO, Moakes S, Klocke P, Staehli P, Notz C, Walkenhorst M (2017) Implications of feed concentrate reduction in organic grassland-based dairy systems: a long-term on-farm study. Animal 11:1–10. https://doi.org/10.1017/S1751731117000830 | es_ES |
dc.description.references | Lesschen JP, Elbersen B, Hazeu G et al (2016) Defining and classifying grasslands in Europe. Wageningen University and Research: Wageningen, The Netherlands | es_ES |
dc.description.references | Madry W, Mena Y, Roszkowska-Madra B et al (2013) An overview of farming system typology methodologies and its use in the study of pasture-based farming system: a review. Spanish J Agric Res 11:316–326. https://doi.org/10.5424/sjar/2013112-3295 | es_ES |
dc.description.references | Markova-Nenova N, Wätzold F (2018) Fair to the cow or fair to the farmer? The preferences of conventional milk buyers for ethical attributes of milk. Land Use Policy 79:223–239. https://doi.org/10.1016/j.landusepol.2018.07.045 | es_ES |
dc.description.references | Martin G, Moraine M, Ryschawy J, Magne MA, Asai M, Sarthou JP, Duru M, Therond O (2016) Crop–livestock integration beyond the farm level: a review. Agron Sustain Dev 36:53. https://doi.org/10.1007/s13593-016-0390-x | es_ES |
dc.description.references | Mehrabi Z, Gill M, van Wijk M et al (2020) Livestock policy for sustainable development. Nat Food 1:160–165. https://doi.org/10.1038/s43016-020-0042-9 | es_ES |
dc.description.references | Munidasa S, Eckard R, Sun X, Cullen B, McGill D, Chen D, Cheng L (2021) Challenges and opportunities for quantifying greenhouse gas emissions through dairy cattle research in developing countries. J Dairy Res 88:73–77. https://doi.org/10.1017/S0022029921000182 | es_ES |
dc.description.references | Murphy B, Crosson P, Kelly AK, Prendiville R (2017) An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems. Agric Syst 154:124–132. https://doi.org/10.1016/j.agsy.2017.03.007 | es_ES |
dc.description.references | Muscat A, de Olde EM, Ripoll-Bosch R, van Zanten HHE, Metze TAP, Termeer CJAM, van Ittersum MK, de Boer IJM (2021) Principles, drivers and opportunities of a circular bioeconomy. Nat Food 2:561–566. https://doi.org/10.1038/s43016-021-00340-7 | es_ES |
dc.description.references | Neumann K, Elbersen BS, Verburg PH, Staritsky I, Pérez-Soba M, de Vries W, Rienks WA (2009) Modelling the spatial distribution of livestock in Europe. Landsc Ecol 24:1207–1222. https://doi.org/10.1007/s10980-009-9357-5 | es_ES |
dc.description.references | Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome | es_ES |
dc.description.references | Perrin A, Martin G (2021) Resilience of French organic dairy cattle farms and supply chains to the Covid-19 pandemic. Agric Syst 190:103082. https://doi.org/10.1016/j.agsy.2021.103082 | es_ES |
dc.description.references | Peyraud J, Macleod M (2020) Future of EU Livestock: How to Contribute to a Sustainable Agricultural Sector. Final Report. Directorate-General for Agriculture and Rural Development (European Commission): Brussels | es_ES |
dc.description.references | Peyraud JL, Le Gall A, Lüscher A (2009) Potential food production from forage legume-based-systems in Europe: an overview. Irish J Agric Food Res 48:115–135 | es_ES |
dc.description.references | Poczta W, Średzińska J, Chenczke M (2020) Economic situation of dairy farms in identified clusters of European Union countries. Agriculture 10:92. https://doi.org/10.3390/agriculture10040092 | es_ES |
dc.description.references | Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Science (80- ) 362:908. https://doi.org/10.1126/science.aav0294 | es_ES |
dc.description.references | Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockström J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain 1:441–446. https://doi.org/10.1038/s41893-018-0114-0 | es_ES |
dc.description.references | QGIS Development Team (2021) QGIS Development Team. (2021). QGIS geographic information system. QGIS Association. https://www.qgis.org | es_ES |
dc.description.references | Qi A, Holland RA, Taylor G, Richter GM (2018) Grassland futures in Great Britain—productivity assessment and scenarios for land use change opportunities. Sci Total Environ 634:1108–1118. https://doi.org/10.1016/j.scitotenv.2018.03.395 | es_ES |
dc.description.references | R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org | es_ES |
dc.description.references | Rasmussen LV, Coolsaet B, Martin A, Mertz O, Pascual U, Corbera E, Dawson N, Fisher JA, Franks P, Ryan CM (2018) Social-ecological outcomes of agricultural intensification. Nat Sustain 1:275–282. https://doi.org/10.1038/s41893-018-0070-8 | es_ES |
dc.description.references | Ravetto Enri S, Probo M, Farruggia A, Lanore L, Blanchetete A, Dumont B (2017) A biodiversity-friendly rotational grazing system enhancing flower-visiting insect assemblages while maintaining animal and grassland productivity. Agric Ecosyst Environ 241:1–10. https://doi.org/10.1016/j.agee.2017.02.030 | es_ES |
dc.description.references | Rea A, Rea W (2016) How many components should be retained from a multivariate time series PCA?. arXiv:1610.03588 | es_ES |
dc.description.references | Reheul D, Vilegher A, Bommelé L, Carlier L (2007) The comparison between temporary and permanent grassland. In Permanent and temporary grassland: plant, environment and economy. Proceedings of the 14th Symposium of the European Grassland Federation, Ghent, Belgium, 3-5 September 2007 (pp. 1–13). Belgian Society for Grassland and Forage Crops. | es_ES |
dc.description.references | Revelle W (2020) psych: Procedures for personality and psychological research | es_ES |
dc.description.references | Robert M, Thomas A, Sekhar M, Badiger S, Ruiz L, Willaume M, Leenhardt D, Bergez JE (2017) Farm typology in the Berambadi Watershed (India): farming systems are determined by farm size and access to groundwater. Water (Switzerland) 9:1–21. https://doi.org/10.3390/w9010051 | es_ES |
dc.description.references | Rotz CA (2018) Modeling greenhouse gas emissions from dairy farms. J Dairy Sci 101:6675–6690. https://doi.org/10.3168/jds.2017-13272 | es_ES |
dc.description.references | Ryschawy J, Choisis N, Choisis JP, Joannon A, Gibon A (2012) Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Animal 6:1722–1730. https://doi.org/10.1017/S1751731112000675 | es_ES |
dc.description.references | Salou T, Le Mouël C, van der Werf HMG (2017) Environmental impacts of dairy system intensification: the functional unit matters! J Clean Prod 140:445–454. https://doi.org/10.1016/j.jclepro.2016.05.019 | es_ES |
dc.description.references | San Martin D, Orive M, Iñarra B, García A, Goiri I, Atxaerandio R, Urkiza J, Zufía J (2021) Spent coffee ground as second-generation feedstuff for dairy cattle. Biomass Convers Biorefinery 11:589–599. https://doi.org/10.1007/s13399-020-00610-7 | es_ES |
dc.description.references | Sanchis E, Calvet S, del Prado A, Estellés F (2019) A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosyst Eng 178:176–183. https://doi.org/10.1016/j.biosystemseng.2018.11.017 | es_ES |
dc.description.references | Schils RLM, Bufe C, Rhymer CM et al (2022) Permanent grasslands in Europe: land use change and intensification decrease their multifunctionality. Agric Ecosyst Environ 330:107891. https://doi.org/10.1016/j.agee.2022.107891 | es_ES |
dc.description.references | Schut AGT, Cooledge EC, Moraine M et al (2021) Reintegration of crop-livestock systems In Europe: an overview. Front Agric Sci Eng 8:111–129. https://doi.org/10.15302/J-FASE-2020373 | es_ES |
dc.description.references | Searchinger T, Hanson C, Ranganathan J et al (2014) Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final report. World Resources Insitute. Washington DC | es_ES |
dc.description.references | Senga Kiessé T, Corson MS, Wilfart A (2022) Analysis of milk production and greenhouse gas emissions as a function of extreme variations in forage production among French dairy farms. J Environ Manage 307:114537. https://doi.org/10.1016/j.jenvman.2022.114537 | es_ES |
dc.description.references | Shadbolt N, Olubode-Awosola F, Rutsito B (2017) Resilience in dairy farm businesses; to bounce without breaking. J Adv Agric 7:1138–1150. https://doi.org/10.24297/jaa.v7i3.6401 | es_ES |
dc.description.references | Sinha A, Basu D, Priyadarshi P, Sharma M (2021) Application of geographic information system and multivariate techniques for the delineation of farm typologies. Natl Acad Sci Lett 45:3–6. https://doi.org/10.1007/s40009-021-01071-w | es_ES |
dc.description.references | Sneessens I, Sauvée L, Randrianasolo-Rakotobe H, Ingrand S (2019) A framework to assess the economic vulnerability of farming systems: application to mixed crop-livestock systems. Agric Syst 176:102658. https://doi.org/10.1016/j.agsy.2019.102658 | es_ES |
dc.description.references | Stark F, González-García E, Navegantes L, Miranda T, Poccard-Chapuis R, Archimède H, Moulin CH (2018) Crop-livestock integration determines the agroecological performance of mixed farming systems in Latino-Caribbean farms. Agron Sustain Dev 38:92. https://doi.org/10.1007/s13593-017-0479-x | es_ES |
dc.description.references | Stavi I, Bel G, Zaady E (2016) Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A revies. Agron Sustain Dev 36:32. https://doi.org/10.1007/s13593-016-0368-8 | es_ES |
dc.description.references | Steinfeld H, Gerber P, Wassenaar TD et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome | es_ES |
dc.description.references | Styles D, Gonzalez-Mejia A, Moorby J, Foskolos A, Gibbons J (2018) Climate mitigation by dairy intensification depends on intensive use of spared grassland. Glob Chang Biol 24:681–693. https://doi.org/10.1111/gcb.13868 | es_ES |
dc.description.references | Tabacco E, Comino L, Borreani G (2018) Production efficiency, costs and environmental impacts of conventional and dynamic forage systems for dairy farms in Italy. Eur J Agron 99:1–12. https://doi.org/10.1016/j.eja.2018.06.004 | es_ES |
dc.description.references | Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM (2011) Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric Ecosyst Environ 141:310–322. https://doi.org/10.1016/j.agee.2011.03.009 | es_ES |
dc.description.references | van den Pol-van Dasselaar A, Hennessy D, Isselstein J (2020) Grazing of dairy cows in Europe-an in-depth analysis based on the perception of grassland experts. Sustain 12:1098. https://doi.org/10.3390/su12031098 | es_ES |
dc.description.references | Wei T, Simko V (2017) Package ‘corrplot’. Statistician 17:e24 | es_ES |
dc.description.references | Westhoek HJ, Rood GA, Van Den Berg M, Janse JH (2011) The Protein Puzzle : the consumption and production of meat , dairy and fish in the European Union. Eur J Food Res Rev 1:123–144 | es_ES |
dc.description.references | Wezel A, Herren BG, Kerr RB, Barrios E, Gonçalves ALR, Sinclair F (2020) Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron Sustain Dev 40:40. https://doi.org/10.1007/s13593-020-00646-z | es_ES |