- -

Long amplicon MinION based sequencing study in a salt contaminated twelfth century granite built chapel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long amplicon MinION based sequencing study in a salt contaminated twelfth century granite built chapel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pavlovic, Jelena es_ES
dc.contributor.author Bosch-Roig, Pilar es_ES
dc.contributor.author Ruskova, Magdalena es_ES
dc.contributor.author Plany, Matej es_ES
dc.contributor.author Pangallo, Domenico es_ES
dc.contributor.author Sanmartin, Patricia es_ES
dc.date.accessioned 2023-06-12T18:01:40Z
dc.date.available 2023-06-12T18:01:40Z
dc.date.issued 2022-05-21 es_ES
dc.identifier.issn 0175-7598 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194113
dc.description.abstract [EN] The irregular damp dark staining on the stonework of a salt-contaminated twelfth century granite-built chapel is thought to be related to a non-homogeneous distribution of salts and microbial communities. To enhance understanding of the role of microorganisms in the presence of salt and damp stains, we determined the salt content and identified the microbial ecosystem in several paving slabs and inner wall slabs (untreated and previously bio-desalinated) and in the exterior surrounding soil. Soluble salt analysis and culture-dependent approaches combined with archaeal and bacterial 16S rRNA and fungal ITS fragment as well as with the functional genes nirK, dsr, and soxB long-amplicon MinION-based sequencing were performed. State-of-the-art technology was used for microbial identification, providing information about the microbial diversity and phylogenetic groups present and enabling us to gain some insight into the biological cycles occurring in the community key genes involved in the different geomicrobiological cycles. A well-defined relationship between microbial data and soluble salts was identified, suggesting that poorly soluble salts (CaSO4) could fill the pores in the stone and lead to condensation and dissolution of highly soluble salts (Ca(NO3)(2) and Mg(NO3)(2)) in the thin layer of water formed on the stonework. By contrast, no direct relationship between the damp staining and the salt content or related microbiota was established. Further analysis regarding organic matter and recalcitrant elements in the stonework should be carried out. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. P. Sanmartin acknowledges receipt of a Ramon y Cajal contract (RYC2020-029987-I) financed by the Spanish Ministry of Science and Innovation (MICINN). The authors acknowledge the projects APVV-19-0059 and VEGA 2/099/2021 which also financed this study. The authors acknowledge CONSORCIO DE LA CIUDAD DE SANTIAGO funding for this research. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Applied Microbiology and Biotechnology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Long amplicons es_ES
dc.subject MinION sequencing es_ES
dc.subject Salt contamination es_ES
dc.subject Stone es_ES
dc.subject Batrachochytrium es_ES
dc.subject Bio-desalination es_ES
dc.subject.classification PINTURA es_ES
dc.title Long amplicon MinION based sequencing study in a salt contaminated twelfth century granite built chapel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00253-022-11961-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SRDA//APVV-19-0059/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VEGA//2%2F099%2F2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC2020-029987-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Bellas Artes - Facultat de Belles Arts es_ES
dc.description.bibliographicCitation Pavlovic, J.; Bosch-Roig, P.; Ruskova, M.; Plany, M.; Pangallo, D.; Sanmartin, P. (2022). Long amplicon MinION based sequencing study in a salt contaminated twelfth century granite built chapel. Applied Microbiology and Biotechnology. 106(11):4297-4314. https://doi.org/10.1007/s00253-022-11961-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00253-022-11961-8 es_ES
dc.description.upvformatpinicio 4297 es_ES
dc.description.upvformatpfin 4314 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 106 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 35596787 es_ES
dc.identifier.pmcid PMC9200699 es_ES
dc.relation.pasarela S\466297 es_ES
dc.contributor.funder Consorcio de Santiago es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Scientific Grant Agency, Eslovaquia es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Slovak Research and Development Agency es_ES
dc.description.references Albertano P, Urzì C (1999) Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microb Ecol 38:244–252 es_ES
dc.description.references Bae GD, Hwang CY, Kim HM, Cho BC (2010) Salinisphaera dokdonensis sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 60:680–685 es_ES
dc.description.references Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Caves Karst Stud 69(1):163–178 es_ES
dc.description.references Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia−oxidizing archaea: diversity and genomic context. Environ Microbiol 12:1075–1088 es_ES
dc.description.references Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA 95:9031–9036 es_ES
dc.description.references Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529 es_ES
dc.description.references Bosch-Roig P, Allegue H, Bosch I (2019) Granite pavement nitrate desalination: traditional methods vs. biocleaning methods. Sustainability 11:4227 es_ES
dc.description.references Bosch-Roig P, Pérez-Castro L, Fernández-Santiago Á, Bosch I (2021) High dimension granite pavement bio-desalination practical implementation. Appl Sci 11:6458 es_ES
dc.description.references Bosch-Roig P, Sanmartín P (2021) Bioremoval of graffiti in the context of current biocleaning research. In: Joseph, E (ed) Microorganisms in the deterioration and preservation of cultural heritage, Springer Nature, Cham, Switzerland, 175–197. es_ES
dc.description.references Bosch-Roig P, Decorosi F, Giovannetti L, Ranalli G, Viti C (2016) Connecting phenome to genome in Pseudomonas stutzeri 5190: an artwork biocleaning bacterium. Res Microbiol 167: 757e765 es_ES
dc.description.references Caneva G, Salvadori O, Ricci S, Ceschin S (2005) Ecological analysis and biodeterioration processes over time at the Hieroglyphic Stairway in the Copàn (Honduras) archaeological site. Plant Biosyst 139(3):295–310 es_ES
dc.description.references Cho GY, Lee JC, Whang KS (2017) Aliifodinibius salicampi sp. nov., a moderately halophilic bacterium isolated from a grey saltern. Int J Syst Evol Microbiol 67:2598–2603 es_ES
dc.description.references Cirigliano A, Tomassetti MC, Di Pietro M, Mura F, Maneschi ML, Gentili MD, Cardazzo B, Arrighi C, Mazzoni C, Negri R, Rinaldi T (2018) Calcite moonmilk of microbial origin in the Etruscan tomba degli scudi in Tarquinia, Italy. Sci Rep 8:1–10 es_ES
dc.description.references Conesa A, Punt PJ, Van den Hondel CA (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158 es_ES
dc.description.references Covino S, Svobodová K, Čvančarová M, D’Annibale A, Petruccioli M, Federici F, Křesinová Z, Galli E, Cajthaml T (2010) Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere 79:855–864 es_ES
dc.description.references Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150 es_ES
dc.description.references Dedesko S, Siegel JA (2015) Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 3:1–15 es_ES
dc.description.references Elert K, Ruiz-AgudoE JF, Gonzalez-Muñoz MT, Fash BW, Fash WL, Valentin N, Tagle A, Rodriguez-Navarro C (2021) Degradation of ancient Maya carved tuff stone at Copan and its bacterial bioconservation. NPJ Mater Degrad 5(44):1–44 es_ES
dc.description.references Ettenauer J, Sterflinger K, Piñar G (2010) Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. Int J Astrobiol 9:59–72 es_ES
dc.description.references Ettenauer J, Piñar G, Sterflinger K, Gonzalez-Muñoz MT, Jroundi F (2011) Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environ 409:5337–5352 es_ES
dc.description.references Ettenauer J, Jurado V, Pinar G, Miller AZ, Santner M, Saiz-Jimenez C, Sterflinger K (2014) Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS ONE 9:e103844 es_ES
dc.description.references Fomina M, Burford EP, Gadd GM (2006) Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, UK, pp 236–266 es_ES
dc.description.references Freedland J (1999) Soluble salts in porous materials: evaluating effectiveness of their removal. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, https://repository.upenn.edu/cgi/viewcontent.cgi?article=1482&context=hp_theses. Accessed 13 Dec 2021 es_ES
dc.description.references Gadd GM (2017) Geomicrobiology of the built environment. Nat Microbiol 2:1–9 es_ES
dc.description.references García Morales S, Otero Ortiz de Cosca R, Allegue Castelos H (2016) Investigación sobre el oscurecimiento húmedo que afecta al enlosado de la Capilla del Cristo de Santa María de Conxo. Cuadernos técnicos. Consorcio de Santiago. Santiago de Compostela, Spain, https://issuu.com/consorciodesantiago/docs/conxo_oscurecimiento_humedo. Accessed 10 Dec 2021 es_ES
dc.description.references Gaylarde C, Baptista-Neto JA, Ogawa A, Kowalski M, Celikkol-Aydin S, Beech I (2017) Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling 33:113–127 es_ES
dc.description.references Gee GW, Bauder JW (1986) Particle-size analysis. In Klute, A. (Ed.) Methods of soils analysis, Part. 1. Soil Science Society of America Book Series 5, Madison, Wisconsin, USA, pp 383–411 es_ES
dc.description.references Germinario L, Oguchi CT (2021) Underground salt weathering of heritage stone: lithological and environmental constraints on the formation of sulfate efflorescences and crusts. J Cult Herit 49:85–93 es_ES
dc.description.references Gorbushina AA, Broughton WJ (2009) Microbiology of the atmosphere-rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Ann Rev Microbiol 63:431–450 es_ES
dc.description.references Gutiérrez MC, Castillo AM, Kamekura M, Ventosa A (2008) Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884 es_ES
dc.description.references Haque RU, Paradisi F, Allers T (2020) Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 104:1371–1382 es_ES
dc.description.references Heyrman J, Swings J, Balcaen A, De Vos P (2002) Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52:2049–2054 es_ES
dc.description.references Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428 es_ES
dc.description.references Kembel SW, Meadow JF, O’Connor TK, Mhuireach G, Northcutt D, Kline J, Moriyama M, Brown GZ, Bohannan BJ, Green JL (2014) Architectural design drives the biogeography of indoor bacterial communities. PLoS ONE 9:87093 es_ES
dc.description.references Kinnunen P, Miettinen H, Bomberg M (2020) Review of potential microbial effects on flotation. Minerals 10:533 es_ES
dc.description.references Kraková L, Šoltys K, Budiš J, Grivalský T, Ďuriš F, Pangallo D, Szemes T (2016) Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning. Extremophiles 20:795–808 es_ES
dc.description.references Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74 es_ES
dc.description.references Laiz L, Miller AZ, Jurado V, Akatova E, Sanchez-Moral S, Gonzalez JM, Dionísio A, Macedo MF, Saiz-Jimenez C (2009) Isolation of five Rubrobacter strains from biodeteriorated monuments. Naturwissenschaften 96:71–79 es_ES
dc.description.references Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiology and Molecular. Biol 2:510e547 es_ES
dc.description.references Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackenbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–148 es_ES
dc.description.references Li H, Liu D, Lian B, Sheng Y, Dong H (2012) Microbial diversity and community structure on corroding concretes. Geomicrobiol J 29:450–458 es_ES
dc.description.references Li J, Gao Y, Dong H, Sheng GP (2022) Haloarchaea, excellent candidates for removing pollutants from hypersaline wastewater. Trends Biotechnol 40:226–239 es_ES
dc.description.references Lin W, Lin W, Cheng X, Chen G, Ersan YC (2021) Microbially induced desaturation and carbonate precipitation through denitrification: a review. Appl Sci 11:7842 es_ES
dc.description.references Martínez-Cortizas A, Pérez-Alberti A (eds) (1999) Atlas climático de Galicia. Consellería de Medioambiente, Xunta de Galicia, p 207 es_ES
dc.description.references Marvasi M, Cavalieri D, Mastromei G, Casaccia A, Perito B (2019) Omics technologies for an in-depth investigation of biodeterioration of cultural heritage. Int Biodeter Biodegr 144:104736 es_ES
dc.description.references Meng H, Katayama Y, Gu JD (2017) More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Int Biodeter Biodegr 117:78–88 es_ES
dc.description.references Miller A, Macedo MF (2006) Mapping and characterization of a green biofilm inside of Vilar de Frades church (Portugal). In: Proceedings of the international conference on heritage, weathering and conservation HWC.1: 329–335 es_ES
dc.description.references Nunes C, Skruzná O, Válek J (2018) Study of nitrate contaminated samples from a historic building with the hygroscopic moisture content method: Contribution of laboratory data to interpret results practical significance. J Cult Herit 30:57–69 es_ES
dc.description.references Ortega-Morales BO, Gaylarde CC (2021) Bioconservation of historic stone buildings- an updated review. Appl Sci 11:5695 es_ES
dc.description.references Park SJ, Cha IT, Kim SJ, Shin KS, Hong Y, Roh DH, Rhee SK (2012) Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 62:1877–1883 es_ES
dc.description.references Pavlović J, Cavalieri D, Mastromei G, Pangallo D, Perito B, Marvasi M (2021) MinION technology for microbiome sequencing applications for the conservation of cultural heritage. Microbiol Res 247:126727 es_ES
dc.description.references Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the sox B gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Let 197:171–178 es_ES
dc.description.references Pinna D (2014) Biofilms and lichens on stone monuments: do they damage or protect? Front Microbiol 5:133 es_ES
dc.description.references Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83 es_ES
dc.description.references Rego A, Raio F, Martins TP, Ribeiro H, Sousa AGG, SénecaJ BMS, Lee CK, Cary SC, Ramos V, Carvalho MF, Leão PN, Magalhães C (2019) Actinobacteria and Cyanobacteria diversity in terrestrial Antarctic microenvironments evaluated by culture-dependent and independent methods. Front Microbiol 10:1–19 es_ES
dc.description.references Rivadeneyra MA, Pérez-García I, Ramos-Cormenzana A (1992) Struvite precipitation by soil and fresh water bacteria. Curr Microbio 24:343–347 es_ES
dc.description.references Rollins-Smith LA (2020) Global amphibian declines, disease, and the ongoing battle between Batrachochytrium fungi and the immune system. Herpetologica 76:178–188 es_ES
dc.description.references Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712 es_ES
dc.description.references Sanmartín P, Villa F, Cappitelli F, Balboa S, Carballeira R (2020) Characterization of a biofilm and the pattern outlined by its growth on a granite built cloister in the Monastery of San Martiño Pinario (Santiago de Compostela, NW Spain). Int Biodeter Biodegr 147:104871 es_ES
dc.description.references Sarathchandra SU (1979) A simplified method for estimating ammonium oxidising bacteria. Plant Soil 52:305–309 es_ES
dc.description.references Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S (2004) Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonin and La Garma). FEMS Microbiol Ecol 47:235–247 es_ES
dc.description.references Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments- an updated overview. Adv Appl Microbiol 66:97–139 es_ES
dc.description.references Schröer L, De Kock T, Cnudde V, Boon N (2020) Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment. Sci Total Environ 733:139339 es_ES
dc.description.references Schröer L, Boon N, De Kock T, Cnudde V (2021) The capabilities of bacteria and archaea to alter natural building stones- a review. Int Biodeter Biodegr 165:105329 es_ES
dc.description.references Shao K, Deng HM, Chen YT, Zhou HJ, Yan GX (2016) Screening and identification of aerobic denitrifiers. In IOP Conf. Ser. Earth Environ. Sci. 39(1), 012049. IOP Publishing, Bristol, UK. es_ES
dc.description.references Sheehan KB, Henson JM, Ferris MJ (2005) Legionella species diversity in an acidic biofilm community in Yellowstone National Park. Appl Environ Microbiol 71:507–511 es_ES
dc.description.references Shimane Y, Tsuruwaka Y, Miyazaki M, Mori K, Minegishi H, Echigo A, Ohta Y, Maruyama T, Grant WD, Hatada Y (2013) Salinisphaera japonica sp. nov., a moderately halophilic bacterium isolated from the surface of a deep-sea fish, Malacocottus gibber, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 63:2180–2185 es_ES
dc.description.references Song HS, Cha IT, Rhee JK, Yim KJ, Kim AY, Choi JS, Baek SJ, Seo MJ, Park SJ, Nam YD, Roh SW (2016) Halostella salina gen. nov., sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 66:2740–2746 es_ES
dc.description.references Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S, Mena MC, Toshchakov SV, Golyshin PN, Yakimov MM (2018) Sulfur respiration in a group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes. Front Microbiol 9:2359 es_ES
dc.description.references Sorokin DY, Yakimov MM, Messina E, Merkel AY, Koenen M, Bale NJ, Damsté JSS (2021) Halapricum desulfuricans sp. nov., carbohydrate-utilizing, sulfur-respiring haloarchaea from hypersaline lakes. Syst App Microbiol 44:126249 es_ES
dc.description.references Starosvetsky J, Zukerman U, Armon RH (2013) A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples. J Microbiol Methods 92:178–182 es_ES
dc.description.references Steiger M (2016) The geochemistry of nitrate deposits: I. Thermodynamics of Mg(NO3)2–H2O and solubilities in the Na+–Mg2+–NO3––SO42––H2O system. Chem Geol 436:84–97 es_ES
dc.description.references Tang L, Zhang Z, Xie R, Jiao N, Zhang Y (2018) Salinisphaera aquimarina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 68:1130–1134 es_ES
dc.description.references Tao J, Qin C, Feng X, Ma L, Liu X, Yin H, Liang Y, Liu H, Huang C, Zhang Z, Xiao N, Meng D (2019) Traits of exogenous species and indigenous community contribute to the species colonization and community succession. Front Microbiol 9:1–12 es_ES
dc.description.references Tofalo R, Fusco V, Böhnlein C, Kabisch J, Logrieco AF, Habermann D, Cho GS, Benomar N, Abriouel H, Schmidt-Heydt M, Neve H, Bockelmann W, Franz CMAP (2020) The life and times of yeasts in traditional food fermentations. Crit Rev Food Sci Nutr 60:3103–3132 es_ES
dc.description.references Trifi H, Najjari A, Achouak W, Barakat M, Ghedira K, Mrad F, Saidi M, Sghaier H (2020) Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: insights for bioremediation. Genomics 112:981–989 es_ES
dc.description.references Trovão J, Portugal A, Soares F, Paiva DS, Mesquita N, Coelho C, Pinheiro AC, Catarino L, Gil F, Tiago I (2019) Fungal diversity and distribution across distinct biodeterioration phenomena in limestone walls of the old cathedral of Coimbra, UNESCO World Heritage Site. Int Biodeter Biodegr 142:91–102 es_ES
dc.description.references UNE-EN 16455:2016. Conservation of cultural heritage—extraction and determination of soluble salts in natural stone and related materials used in and from cultural heritage; AENOR: Madrid, Spain, 2016. es_ES
dc.description.references Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387 es_ES
dc.description.references Urzì C, De Leo F, Bruno L, Albertano P (2010) Microbial diversity in Paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60:116–129 es_ES
dc.description.references Vietti LA (2014) Insights into the microbial degradation of bones from the marine vertebrate fossil record: an experimental approach using interdisciplinary analyses. Doctoral dissertation, University of Minnesota; USA https://conservancy.umn.edu/bitstream/handle/11299/172046/Vietti_umn_0130E_15288.pdf?sequence=1&isAllowed=y. Accessed 19 May 2021 es_ES
dc.description.references Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982 es_ES
dc.description.references Wang Y, Liu X (2021) Sulfur-oxidizing bacteria involved in the blackening of basalt sculptures of the Leizhou Stone Dog. Int Biodeter Biodegr 159:105207 es_ES
dc.description.references Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77:733–738 es_ES
dc.description.references Wang YX, Liu JH, Xiao W, Ma XL, Lai YH, Li ZY, Ji KY, Wen ML, Cui XL (2013) Aliifodinibius roseus gen. nov., sp. nov., and Aliifodinibius sediminis sp. nov., two moderately halophilic bacteria isolated from salt mine samples. Int J Syst Evol Microbiol 63:2907–2913 es_ES
dc.description.references Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9:1954–1965 es_ES
dc.description.references White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–321 es_ES
dc.description.references Xia J, Ling SK, Wang XQ, Chen GJ, Du ZJ (2016) Aliifodinibius halophilus sp. nov., a moderately halophilic member of the genus Aliifodinibius, and proposal of Balneolaceae fam. nov. Int J Syst Evol Microbiol 66:2225–2233 es_ES
dc.description.references Zhang XW, Zhang X (2006) Mechanism and research approach of microbial corrosion of concrete. J Build Mater 9:52–58 es_ES
dc.subject.ods 05.- Alcanzar la igualdad entre los géneros y empoderar a todas las mujeres y niñas es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem