- -

Neural Models for Measuring Confidence on Interactive Machine Translation Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Neural Models for Measuring Confidence on Interactive Machine Translation Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Martínez, Ángel es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2023-06-13T18:02:47Z
dc.date.available 2023-06-13T18:02:47Z
dc.date.issued 2022-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194175
dc.description.abstract [EN] Reducing the human effort performed with the use of interactive-predictive neural machine translation (IPNMT) systems is one of the main goals in this sub-field of machine translation (MT). Prior works have focused on changing the human¿machine interaction method and simplifying the feedback performed. Applying confidence measures (CM) to an IPNMT system helps decrease the number of words that the user has to check through the translation session, reducing the human effort needed, although this supposes losing a few points in the quality of the translations. The effort reduction comes from decreasing the number of words that the translator has to review¿it only has to check the ones with a score lower than the threshold set. In this paper, we studied the performance of four confidence measures based on the most used metrics on MT. We trained four recurrent neural network (RNN) models to approximate the scores from the metrics: Bleu, Meteor, Chr-f, and TER. In the experiments, we simulated the user interaction with the system to obtain and compare the quality of the translations generated with the effort reduction. We also compare the performance of the four models between them to see which of them obtains the best results. The results achieved showed a reduction of 48% with a Bleu score of 70 points¿a significant effort reduction to translations almost perfect. es_ES
dc.description.sponsorship This work received funds from the Comunitat Valenciana under project EU-FEDER (ID-IFEDER/2018/025), Generalitat Valenciana under project ALMAMATER (PrometeoII/2014/030), and Ministerio de Ciencia e Investigacion/Agencia Estatal de Investigacion/10.13039/501100011033/and "FEDER Una manera de hacer Europa" under project MIRANDA-DocTIUM (RTI2018-095645-B-C22). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Machine translation es_ES
dc.subject Confidence measures es_ES
dc.subject Neural model es_ES
dc.subject Quality estimation es_ES
dc.subject Interactive machine translation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Neural Models for Measuring Confidence on Interactive Machine Translation Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app12031100 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095645-B-C22/ES/TRANSCRIPCION DE DOCUMENTOS CON PLATAFORMAS INTERACTIVAS UBICUAS MULTIMODALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEOII%2F2014%2F030//Adaptive learning and multimodality in machine translation and text transcription/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Navarro-Martínez, Á.; Casacuberta Nolla, F. (2022). Neural Models for Measuring Confidence on Interactive Machine Translation Systems. Applied Sciences. 12(3):1-16. https://doi.org/10.3390/app12031100 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app12031100 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\455012 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
upv.costeAPC 1750 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem