- -

On the Generalization of Sleep Apnea Detection Methods Based on Heart Rate Variability and Machine Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Generalization of Sleep Apnea Detection Methods Based on Heart Rate Variability and Machine Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Padovano, Daniele es_ES
dc.contributor.author Martínez-Rodrigo, Arturo es_ES
dc.contributor.author Pastor, José M. es_ES
dc.contributor.author Rieta, J J es_ES
dc.contributor.author Alcaraz, Raul es_ES
dc.date.accessioned 2023-06-16T18:02:36Z
dc.date.available 2023-06-16T18:02:36Z
dc.date.issued 2022 es_ES
dc.identifier.uri http://hdl.handle.net/10251/194333
dc.description.abstract [EN] Obstructive sleep apnea (OSA) is a respiratory disorder highly correlated with severe cardiovascular diseases that has unleashed the interest of hundreds of experts aiming to overcome the elevated requirements of polysomnography, the gold standard for its detection. In this regard, a variety of algorithms based on heart rate variability (HRV) features and machine learning (ML) classifiers have been recently proposed for epoch-wise OSA detection from the surface electrocardiogram signal. Many researchers have employed freely available databases to assess their methods in a reproducible way, but most were purely tested with cross-validation approaches and even some using solely a single database for training and testing procedures. Hence, although promising values of diagnostic accuracy have been reported by some of these methods, they are suspected to be overestimated and the present work aims to analyze the actual generalization ability of several epoch-wise OSA detectors obtained through a common ML pipeline and typical HRV features. Precisely, the performance of the generated OSA detectors has been compared on two validation approaches, i.e., the widely used epoch-wise, k-fold cross-validation and the highly recommended external validation, both considering different combinations of well-known public databases. Regardless of the used ML classifiers and the selected HRV-based features, the external validation results have been 20 to 40% lower than those obtained with cross-validation in terms of accuracy, sensitivity, and specificity. Consequently, these results suggest that ML-based OSA detectors trained with public databases are still not sufficiently general to be employed in clinical practice, as well as that larger, more representative public datasets and the use of external validation are mandatory to improve the generalization ability and to obtain reliable assessment of the true predictive power of these algorithms, respectively. es_ES
dc.description.sponsorship This research has received financial support from public grants PID2021-00X128525-IV0 and PID2021-123804OB-I00 of the Spanish Government 10.13039/501100011033 jointly with the European Regional Development Fund, SBPLY/17/180501/000411 and SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. Moreover, Daniele Padovano holds a predoctoral scholarship 2022-PRED-20642, which is cofinanced by the operating program of European Social Fund (ESF) 2014-2020 of Castilla-La Mancha. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrocardiography es_ES
dc.subject Heart rate variability es_ES
dc.subject Machine learning es_ES
dc.subject Sleep apnea es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title On the Generalization of Sleep Apnea Detection Methods Based on Heart Rate Variability and Machine Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2022.3201911 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-123804OB-I00//INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MÓVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F286//Inteligencia Artificial para Revolucionar la Medicina Móvil Usando Dispositivos Llevables/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-00X128525-IV0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Padovano, D.; Martínez-Rodrigo, A.; Pastor, JM.; Rieta, JJ.; Alcaraz, R. (2022). On the Generalization of Sleep Apnea Detection Methods Based on Heart Rate Variability and Machine Learning. IEEE Access. 10:92710-92725. https://doi.org/10.1109/ACCESS.2022.3201911 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2022.3201911 es_ES
dc.description.upvformatpinicio 92710 es_ES
dc.description.upvformatpfin 92725 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\491206 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem