Mostrar el registro sencillo del ítem
dc.contributor.author | Lurbe-Sempere, Manel | es_ES |
dc.contributor.author | Feliu-Pérez, Josué | es_ES |
dc.contributor.author | Petit Martí, Salvador Vicente | es_ES |
dc.contributor.author | Gómez Requena, María Engracia | es_ES |
dc.contributor.author | Sahuquillo Borrás, Julio | es_ES |
dc.date.accessioned | 2023-06-19T18:01:07Z | |
dc.date.available | 2023-06-19T18:01:07Z | |
dc.date.issued | 2022-10-01 | es_ES |
dc.identifier.issn | 0018-9340 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/194384 | |
dc.description.abstract | [EN] Current multi-core processors implement sophisticated hardware prefetchers, that can be configured by application (PID),to improve the system performance. When running multiple applications, each application can present different prefetch requirements,hence different configurations can be used. Setting the optimal prefetch configuration for each application is a complex task since itdoes not only depend on the application characteristics but also on the interference at the shared memory resources (e.g. memorybandwidth). In his paper, we proposeDeepP, a deep learning approach for the IBM POWER8 that identifies at run-time the bestprefetch configuration for each application in a workload. To this end, the neural network predicts the performance of each applicationunder the studied prefetch configurations by using a set of performance events. The prediction accuracy of the network is improvedthanks to a dynamic training methodology that allows learning the impact of dynamic changes of the prefetch configuration onperformance. At run-time, the devised network infers the best prefetch configuration for each application and adjusts it dynamically.Experimental results show that the proposed approach improves performance, on average, by 5,8%, 6,7%, and 15,8% compared tothe default prefetch configuration across different 6-, 8-, and 10-application workloads, respectively. | es_ES |
dc.description.sponsorship | This work was supported in part by Ministerio de Ciencia, Innovacion y Universidades and the European ERDF under Grant RTI2018-098156-B-C51, in part by Generalitat Valenciana under Grant AICO/2021/266, and in part by Ayudas Contratos predoctorales UPV -subprograma 1 (PAID-01-20). The work of Josue Feliu was supported by a Juan de la Cierva Formacion Contract under Grant FJC2018-036021-I. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Computers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | IBM POWER8 Processor | es_ES |
dc.subject | Prefetch Configuration | es_ES |
dc.subject | Inter-Application Interference | es_ES |
dc.subject | Machine Learning | es_ES |
dc.subject | Deep Learning | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | DeepP: Deep Learning Multi-Program Prefetch Configuration for the IBM POWER 8 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TC.2021.3139997 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098156-B-C51/ES/TECNOLOGIAS INNOVADORAS DE PROCESADORES, ACELERADORES Y REDES, PARA CENTROS DE DATOS Y COMPUTACION DE ALTAS PRESTACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//PAID-01-20-6//Aplicación de técnicas de deep learning para mejorar las prestaciones y eficiencia energética de los mecanismos de prebúsqueda en procesadores comerciales./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2021%2F266//APLICACIÓN DE TÉCNICAS DE APRENDIZAJE PROFUNDO PARA MEJORAR LAS PRESTACIONES Y EFICIENCIA DE LA PREBÚSQUEDA DE PROCESADORES AVANZADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//FJC2018-036021-I//Ayudas Juan de la Cierva - Formación/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Lurbe-Sempere, M.; Feliu-Pérez, J.; Petit Martí, SV.; Gómez Requena, ME.; Sahuquillo Borrás, J. (2022). DeepP: Deep Learning Multi-Program Prefetch Configuration for the IBM POWER 8. IEEE Transactions on Computers. 71(10):2646-2658. https://doi.org/10.1109/TC.2021.3139997 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TC.2021.3139997 | es_ES |
dc.description.upvformatpinicio | 2646 | es_ES |
dc.description.upvformatpfin | 2658 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\453524 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
upv.costeAPC | 213,83 | es_ES |